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1 Introduction

This package estimates a panel-data model using the method of Hausman and Taylor (1981). As is
well known,

o the standard fixed-effects estimator cannot handle time-invariant variables (since nothing re-
mains of such variables after sweeping out the individual means), while

e the random-effects estimator cannot handle (on pain of inconsistency) regressors that are
correlated with the unobserved individual effects.!

The Hausman-Taylor estimator bridges this gap: it permits estimation of a model that includes
both time-invariant terms and regressors that are correlated with the individual effects. The “price
of admission” (more formally, the condition for identification) is that there must be at least as
many time-varying exogenous regressors— “exogenous” in the sense of being uncorrelated with
the individual effects—as there are time-invariant regressors that are suspected of endogeneity,
that is, of being correlated with the individual effects.

2 The model
Leti=1,...,N index individuals and t = 1,..., T index time. The model is
Vit = Bo + X1 B1 + X0 B2 + Z1;y1 + 252 + Ui + €t 1)

where x; and x, are time-varying and z; and z; are time-invariant. The variables x; and z; are
exogenous (uncorrelated with the individual effects, u;) while x> and z, are assumed to be so
correlated. All of the regressors are assumed to be uncorrelated with €;;.

In general, x1i¢, X2it, z1; and z»; are vectors of length ki, k2, g1 and g», respectively, subject to the
identification requirement k; > g».

The algorithm for the Hausman-Taylor estimator —for a balanced panel in which the time-series
length, T, is the same for all individuals —is commonly given as follows:

1. Regress ¥ = (vir — Vi) on X1 = (x14: — X1;) and X» = (xp;; — X2;) to obtain initial estimates
of B1 and B». Use the residuals from this fixed-effects regression, e;¢, to estimate the “within”
error variance oZ.

2. Perform an IV regression of the stacked individual means of e;; on z; and z», using as in-
struments z; and x;. Use the residual variance from this regression, s%, to estimate o7 as

s3 — 62/T, and calculate the GLS coefficient
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1See the chapter titled “Panel data” in the Gretl User’s Guide for an extended discussion of these points.




3. Let wit = (X1it, X2it, 214, 22¢). Run an IV regression of v = (v — 03;) on w = (wy — Ow,),
using as instruments X, X», X; and z;.

The final step can also be described thus: regress the quasi-demeaned dependent variable on the
quasi-demeaned regressors, taking as instruments the fully-demeaned time-varying regressors, the
individual means of the exogenous time-varying terms, and the levels of the exogenous time-
invariant terms. As Hausman and Taylor (1981, p. 1393) remark, “Making use of time-varying
variables in two ways—to estimate their own coefficients and to serve as instruments for endoge-
nous time-invariant variables —allows identification and efficient estimation of both § and y.”

In an unbalanced panel the time-series length, T;, differs across individuals. In that case steps 2
and 3 above have to be modified slightly. First, the calculation of 62 uses the harmonic mean of
the T;s in place of a common T. Second, the value of 0 differs across individuals:
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Section 7 below takes up a further issue pertaining to the unbalanced case.

3 The hausman_taylor function

The signature of this function is

bundle hausman_taylor (series y "dependent variable",
Tist Lexo "exogenous regressors",
Tist Lndo "endogenous regressors",
int verbosity[0:2:1],
bool as_stata[0])

The series y is the dependent variable, and the lists Lexo and Lndo correspond, respectively, to x
plus z; and x> plus z; in equation (1). This function does not undertake to judge which regressors
are exogenous and which endogenous—you must decide the partition between Lexo and Lndo—
but it can easily determine which regressors are time-varying and which invariant.

The verbosity parameter accepts values 0, 1 or 2: a value of 0 means that nothing is printed; 1
means that the Hausman-Taylor estimates are printed; 2 means that in addition the results of the
preliminary regressions (described in Section 2) are printed. The default value is 1.

The as_stata boolean can be used to produce results comparable with Stata’s xthtaylor command;
an explanation of this option is given on page 7.

This function returns a bundle containing the items shown in Table 1. Most of the contents should
be fairly self-explanatory, but the following comments may be useful.

¢ In the case of an unbalanced panel, the GLS coefficients 0; will differ across individuals; the
theta value is then the mean of the 0;s.

e The Wald, Htest and Stest matrices, if present, are each row vectors containing test statis-
tic, degrees of freedom and P-value pertaining to the Wald, Hausman and Sargan tests, re-
spectively. The Wald test uses the coefficient vector and covariance matrix to test the null
hypothesis that only the constant truly has a non-zero coefficient. The Hausman and Sargan
tests are available only if the specification is overidentified (k; > g»). They both test the null
hypothesis of correct specification. The Hausman test is based on a vector of contrasts, the
difference between the fixed-effects and Hausman-Taylor estimates of the coefficients on the
time-varying regressors. The Sargan test is based on the explained sum of squares from a re-
gression of the Hausman-Taylor residuals on all of the instruments. Small P-values on these
tests cast doubt on the consistency of the estimator.



name type description

depvar string  name of the dependent variable
parnames strings names of regressors

Lexo list exogenous regressors

Lndo list endogenous regressors

coeff matrix regression coefficients

stderr matrix standard errors

vcv matrix variance-covariance matrix

s_e scalar  square root of “within” variance, 62
s_u scalar  square root of 67

ncoeff scalar  total number of coefficients
nobs scalar  total number of observations used
effn scalar  number of units included

Tmin scalar minimum T; value

Tmax scalar maximum T; value

theta scalar  GLS coefficient, 0

wald matrix Wald test results

Htest matrix Hausman test results

Stest matrix  Sargan test results

yhat series  fitted values

uhat series  residuals

rsq scalar  corr(y, )2

Table 1: Items in hausman_taylor bundle



4 Sample script

The sample script for this package uses data on (log) wages and several covariates for 595 indi-
viduals observed annually from 1976 to 1982, taken from the US Panel Study of Income Dynamics.
These data were originally employed by Cornwell and Rupert (1988) to assess various instrumental-
variable estimators for panel data including Hausman-Taylor. They were revisited by Baltagi and
Khanti-Akom (1990) and in chapter 7 of Baltagi (2005). The script replicates both sets of estimates;
partial output is shown in Listing 4.

In each case we may take it that the endogenous regressor of primary interest is ed (education
level). The specifications differ in their treatment of two pairs of regressors: in Cornwell and
Rupert wks (weeks worked) and ms (marital status) are taken to be exogenous while occ (blue-collar
dummy) and 1ind (manufacturing dummy) are endogenous; Baltagi reverses this, assuming that wks
and ms are endogenous, occ and and ind exogenous. Baltagi finds a slightly smaller, but more
sharply estimated, return to education. The Hausman and Sargan specification tests favor Baltagi’s
specification.

5 Graphical interface

Assuming you have said OK to this feature when installing the package, an entry-point for haus-
man_taylor can be found under the Panel sub-menu of gretl’s Model menu: the label is Hausman-
Taylor. The dialog that appears is shown in Figure 1.

6 Ancillary printing function

The ancillary public function ht_print() is provided to “pretty-print” the results contained in
the bundle provided by hausman_taylor(); ht_print() takes a pointer to the bundle as its sole
argument.

7 More on the unbalanced case

A noteworthy aspect of the Hausman-Taylor estimator is the treatment of x; —that is, quasi-
demeaned x;—in the final IV regression. If the panel is balanced x; is effectively treated as
exogenous. It does not appear explicitly among the instruments, but we have the exact linear
relationship

xiie = (X1ie — 0%14) = (X113t — X10) + (1 — 0)X1; = X1ip + (1 — 0) X1

so that x| is “perfectly instrumented” by X, and X;. This is as it should be. By assumption x1;; is
independent of u;, and therefore so is Xx1;. The transformation x;, = x1;; — 0X1; clearly does not
introduce any dependence on u;, so x; ought to be treated as exogenous. It is not included as an
instrument simply because it would be redundant, given the point made above.

Now consider the unbalanced case. It is standard to calculate o2 as s3 — o2/T, where T is the
harmonic mean of the T;s. And 6 varies by individual according to (3) above. This means there is
no longer an exact linear relationship between x;* and the instruments %; and X1, which raises the
question, should x; be added to the set of instruments in the final IV step of Hausman-Taylor?

The alternative—including X; and X; as instruments, but not x;"—amounts to treating x;* as
endogenous, but there is no reason for this. When the panel is unbalanced x7;, is defined by
X1 = Xie — 0iX1i

The substitution of 9; for the common 0 in the balanced case doesn’t make any relevant difference
to the status of x;. The only way in which individual-specific information enters 0; is via the
number of observations, T;, and there is no reason to believe that T; should be correlated with u;.



Cornwell and Rupert specification

Hausman-Taylor estimates for Twage
using 4165 observations (n = 595, T = 7)

coefficient std. error z p-value
const 2.88442 0.852777 3.382 0.0007  #¥¥*
wks 0.000909009 0.000598818 1.518 0.1290
south 0.00713766 0.0325480 0.2193 0.8264
smsa -0.0417623 0.0194019 -2.152 0.0314 wx
ms -0.0363440 0.0188575 -1.927 0.0539 =
exper 0.112972 0.00246967 45.74 0.0000  #**
exper2 -0.000419119 5.45872e-05 -7.678 1.62e-14 **=*
occ -0.0213946 0.0137801 -1.553 0.1205
ind 0.0188416 0.0154404 1.220 0.2224
union 0.0303548 0.0148964 2.038 0.0416  **
fem -0.136847 0.127280 -1.075 0.2823
bTk -0.281829 0.176627 -1.596 0.1106
ed 0.140525 0.0658715 2.133 0.0329  **
sigma_u = 0.94172543
sigma_e = 0.15180272
theta = 0.93918626

Hausman test: chi-square(3) = 14.5555 [0.0022]
Sargan test: chi-square(3) = 14.8759 [0.0019]

Baltagi’s specification

Hausman-Taylor estimates for Twage
using 4165 observations (n = 595, T = 7)

coefficient std. error z p-value
const 2.91273 0.283652 10.27 9.76e-25 *¥**
occ -0.0207047 0.0137809 -1.502 0.1330
south 0.00743984 0.0319550 0.2328 0.8159
smsa -0.0418334 0.0189581 -2.207 0.0273  **
ind 0.0136039 0.0152374 0.8928 0.3720
exper 0.113133 0.00247095 45.79 0.0000 o
exper?2 -0.000418865 5.45981e-05 -7.672 1.70e-14 #*x*
wks 0.000837403 0.000599732 1.396 0.1626
ms -0.0298507 0.0189800 -1.573 0.1158
union 0.0327714 0.0149084 2.198 0.0279  *x*
fem -0.130924 0.126659 -1.034 0.3013
bTk -0.285748 0.155702 -1.835 0.0665
ed 0.137944 0.0212485 6.492 8.47e-11 ***
sigma_u = 0.94180300
sigma_e = 0.15180272
theta = 0.93919126

Hausman test: chi-square(3) = 5.25773 [0.1539]
Sargan test: chi-square(3) = 5.22910 [0.1558]



Hausman-Taylor
Select arguments:
dependent variable (series) | [NEEE - =F
exogenous regressors (list) | Lexo - o
endogenous regressors (list) | Lendo - o
verbose
as_stata
Help Apply Close OK

Figure 1: Specify arguments for hausman_taylor

We conclude that failing to include x{* as an instrument in the unbalanced case will degrade the
efficiency of the estimator. Yet this is what is done in Stata’s xthtaylor command and in R’s plm
package.

If the argument above is correct, it should be possible to show via simulation the degradation of
the efficiency of Hausman-Taylor when quasi-demeaned x; is treated as endogenous in the final IV
regression, given unbalanced data. Conversely, if the argument above is wrong then presumably
simulation should produce evidence of inconsistency when quasi-demeaned x; is added as an
instrument.

To explore this we ran a simulation of the following form.

1. For K = 5000 iterations, generate a random dataset with a known set of parameter values
and a correlation structure that respects the Hausman-Taylor assumptions. Randomly assign
missing values to some proportion of the observations.

2. For each dataset, run the Hausman-Taylor procedure both ways (respectively omitting and
including x{* as an instrument in the final stage) and record the parameter estimates.

3. Calculate the mean and standard deviation of  — 0 for each parameter 6.

Specifically, we constructed datasets containing one variable in each of the categories xi, x2, z;
and z», using the parameter values Bo = 1 = B> = y1 = y» = 1. The panel comprised T = 10
observations for each of N individuals. The series were constructed as follows:

Ui =N(O,l)
x1it = N(0,1)
X2it = N(0,1) + au;
z1; =N(0,1)
z2; =N(0,1) + auj + bxy;
€ir = N(0,1)

with a = 0.3 and b = 0.5. The formula for x;;; ensures that x, is endogenous; and that for zy;
ensures both the endogeneity of z, and its correlation with x;, which is wanted so that x; can serve
as an instrument for z;. In the case of the time-invariant variables, random sequences of length N
were generated and the value for each individual was entered at all T observations.



After constructing the data a uniform random series, v, was generated on [0, 1) and the value of the
dependent variable was set to “missing” at observations for which v;; < 0.04, giving an expectation
of 4 percent unusable observations, hence unbalancing the panel.

One further point: since o is estimated indirectly, in finite samples it may happen that 62 < 0,
in which case the standard procedure is to set 8 = 0. This erases the distinction we're interested
in, between the two variants of the Hausman-Taylor estimator. It’s therefore necessary to calibrate
the simulation so that a non-positive ;2 doesn’t arise too often.?

Figure 2 shows results for the mean error of estimation, relevant to assessing consistency. Points
are shown for four values of N: 20, 50, 100 and 200. The results differ only marginally for f; and
B2, while for Bo, y1 and y, the results are better when x; included as an instrument. There’s no
evidence of inconsistency in the latter case.

Figure 3 shows the standard deviation of estimate minus parameter, relevant to assessing effi-
ciency; results are again given for four values of N. The relative performance of the variants
strongly supports the contention made above. While performance with respect to ; and f; is
virtually identical, the By and y estimates show much greater variance when x; is not included as
an instrument; indeed, the variance of the y estimates is such that they may be useless in practice.

We are now in a position to explain the as_stata option for the hausman_taylor function men-
tioned on page 2. This option has no effect for balanced panels, but in the unbalanced case it means
“Do what Stata does—that is omit x;* as an instrument in the final regression—even though we
reckon it’s not the right thing to do.”

As a practical point, it should be noted that the inclusion (in the unbalanced case) of x; as an in-
strument alongside X; and X, in the final Hausman-Taylor regression may produce near-singularity
of the instrument matrix, depending on the dataset (this was evident in the simulations). However,
with modern econometric software this does not pose a serious problem, since redundant instru-
ments will be dropped automatically.
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Figure 2: Mean error of estimates (y-axis) against number of individuals, N, in sample (x-axis).
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