

The **ZivotAndrews** package

Riccardo (Jack) Lucchetti

version 1.0

Abstract

This package implements the [Zivot and Andrews \(1992\)](#) unit-root test for series with possible structural breaks, using a novel approach for calculating p -values and critical values. A graphical interface is also available.

1 Description

The issue of testing for unit roots in time series potentially subject to structural breaks was first thoroughly investigated by [Perron \(1989\)](#), where the break date was assumed known; shortly afterwards, this limitation was overcome by [Zivot and Andrews \(1992\)](#), who proposed a simple adaptation of Perron's setup to accommodate cases when the break date is unknown.

Like Perron's test, the Zivot-Andrews unit-root test comes in three different flavours: model (A), in which the series may be subject to an abrupt change in level (the so-called "crash" model), model (B), in which the structural break affects the slope of a deterministic linear trend and (C), which combines the two previous ones. Here I follow the notation in [Perron \(1989\)](#) and [Zivot and Andrews \(1992\)](#) and indicate with T_B the observation at which the structural break occurs. The test statistic for the three models (A), (B) and (C) are simple variations on the Augmented Dickey-Fuller theme, and use an auxiliary regression of the following form:

$$\Delta y_t = \mu + \theta D U_t + \beta t + d D(T_B)_t + \alpha y_{t-1} + \sum_{j=1}^k c_j \Delta y_{t-j} + \varepsilon_t \quad (1)$$

$$\Delta y_t = \mu + \beta t + \gamma D T_t^* + \alpha y_{t-1} + \sum_{j=1}^k c_j \Delta y_{t-j} + \varepsilon_t \quad (2)$$

$$\Delta y_t = \mu + \theta D U_t + \gamma D T_t^* + \beta t + d D(T_B)_t + \alpha y_{t-1} + \sum_{j=1}^k c_j \Delta y_{t-j} + \varepsilon_t \quad (3)$$

where $D(T_B)_t = \mathbf{1}[t = T_B + 1]$, $DU_t = \mathbf{1}[t > T_B]$, $DT_t^* = \mathbf{1}[t > T_B](t - T_B)$, and $\mathbf{1}[\cdot]$ is the indicator function. As in the ADF test, the relevant test statistic is the t -ratio for the parameter α , and terms containing the lagged dependent variables in differences are used to mop up short-run dynamics; the choice of the maximal lag k is usually data-driven (more on this later). The test is performed by computing the regression above for all possible values of T_B and choosing the one that minimises the test statistic.

For each of the three models, the limit distribution of the test statistics (1)–(3) is a functional of suitably modified Brownian motions and lacks a closed-form representation. In this package, p -values and critical values are computed using the approximation described in [Lucchetti \(2026\)](#).

2 Syntax

The main function that the package provides is called `ZA_test`, and takes three arguments: the series name, the model type as an integer (1=A, 2=B, 3=C) and an optional bundle to inflect the behaviour of the function.

The accepted values for the option bundle are `maxlag`, to set a maximum value for k (default=12) and `method`, for choosing the k actually used in the auxiliary regression. The `method` key can take 5 different values: with "fixed" the regression will set k to the `maxlag` key. Otherwise, an automatic procedure will be followed: if `method` equals "aic", "bic" or "hqc", the corresponding information criterion will be used. Otherwise, one can use "tstat" (the default), where decreasing values of k , starting from `maxlag`, will be used, stopping as soon as the last c_j coefficient is significant at a 10% level.

The complete list of the items in the bundle returned by `ZA_test` is in Section 5. The most useful are probably `mintest`, the actual test statistic, and `pvalue`, its p -value calculated according to [Lucchetti \(2026\)](#). The ordinal number of the break point T_B is contained in `mintime`, with `mintlab` containing its translation as a string.

Another public function is available, called `ZA_plot`, that plots the t -test for $\alpha = 0$ for all values of T_B , together with the 10% and 5% critical values as horizontal lines. It takes as its argument a bundle created by the `ZA_test` function. Optionally, a second parameter (a string) can be given, to redirect the output to a graphical file.

3 An example

In this example, we replicate one of the tests presented in [Zivot and Andrews \(1992\)](#) using the famous dataset provided in [Nelson and Plosser \(1982\)](#) and available in gretl as `np.gdt`. We'll use the log real per capita

GNP, for which the variant (A) of the test was chosen in the original article. The code fragment

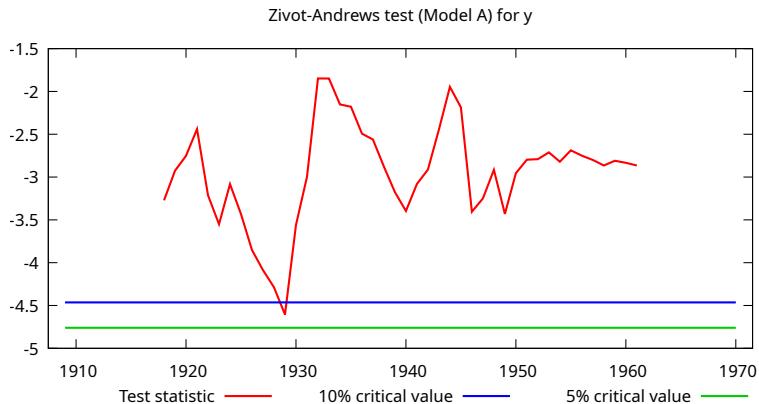
```
set verbose off
include ZivotAndrews.gfn
open np

series y = log(rpcgnp)
bun0 = ZA_test(y, 1)
```

performs the test with the default parameters, with the following output

```
Zivot-Andrews test on y, Model (A)
Sample: 1909 - 1970 (55 observations)
Min. t-test at obs 70 (1929): -4.53529 [pval = 0.085253]
Number of lags of  $\Delta y$  in regression = 6: (max = 12, method = tstat)
```

In the original article, however, the number of lags k was chosen via a different criterion and was set to 7. This can be obtained by using the `fixed` method as follows:


```
bun1 = ZA_test(y, 1, _(method="fixed", maxlag=7))
```

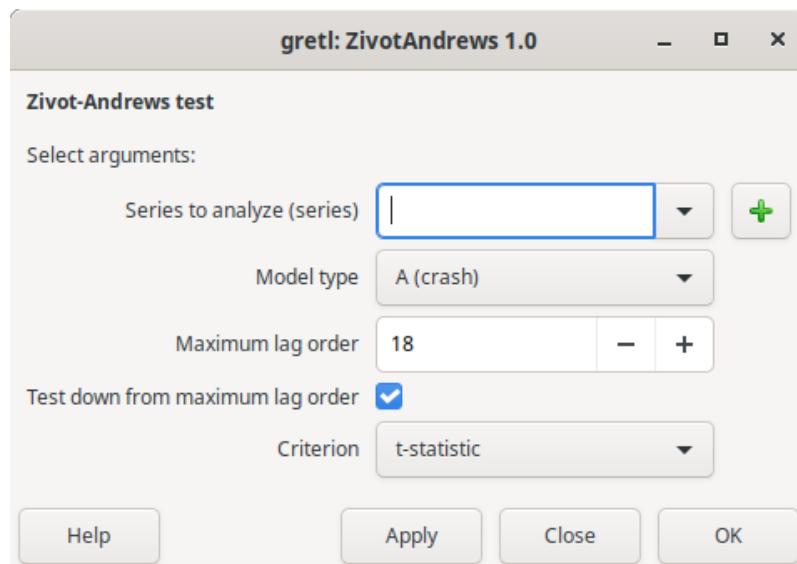
which yields

```
Zivot-Andrews test on y, Model (A)
Sample: 1909 - 1970 (54 observations)
Min. t-test at obs 70 (1929): -4.60582 [pval = 0.0722364]
Number of lags of  $\Delta y$  in regression = 7: (max = 7, method = fixed)
```

and corresponds to the published result.

Figure 1: Plot of the test statistic versus T_B

Invoking the `ZA_plot` function on `bun1`, as in


```
ZA_plot(bun1)
```

a plot like the one shown in Figure 1 is produced.

4 The graphical interface

The functions described in the previous section are also accessible via a graphical interface, similar to the one in Figure 2, whose usage should be self-explanatory. When you install the package, this can be attached to the *Variable > Unit root tests* menu of the gretl program.¹ On successful completion, an output text window will be produced; this window will also contain an icon bar on top that makes it possible to save the results and/or generate the plot.

Figure 2: GUI Interface

5 Public functions

```
function bundle ZA_test(series y, scalar type, bundle opts)
```

Compute the test and returns a bundle. The arguments are

1. `y`, the series to test
2. `type`, the model variant (see eqns. (1)–(3))

¹If you're running gretl with a language setting different from English, this will be translated, but you get the idea.

3. `opts`, an options bundle (optional).

The options bundle can contain the following keys (see section 2):

1. `method`, a string among `fixed`, `tstat` (the default), `aic`, `bic` and `hqc`;
2. `maxlag`, an integer
3. `verbosity`, scalar, amount of output. 0=no output; 1=test details (default), 2=test details + auxiliary regression at T_B

The returned bundle contains

Key	Value
<code>type</code>	model type (1:A, 2:B, 3:C)
<code>mintime</code>	the value of T_B
<code>mintest</code>	the value of the test statistic
<code>mintlab</code>	a label with T_B in text form
<code>pvalue</code>	the test p -value
<code>t1</code>	beginning of sample
<code>t2</code>	end of sample
<code>T</code>	sample size
Items from the test regression	
<code>coeff</code>	coefficient vector of the test regression
<code>depname</code>	string, the name of the series y_t
<code>vcv</code>	the coefficient cov. Matrix of the test regression
<code>stderr</code>	standard errors for the coefficients of the test regression
<code>maxk</code>	maximum number of lags for the test regression
<code>bestlag</code>	value of k actually used
<code>zatest</code>	series, value of the test for each T_B

```
function void ZA_plot(bundle tbun, string dest)
```

Plots the values of the test statistic as a function of the breakpoint T_B . Its arguments are:

1. `tbun`, a bundle generated via `ZA_test`.
2. `dest`, an optional string with a filename to store the output, such as `myplot.pdf` or `foobar.eps`. If omitted or `display`, the plot will be produced on screen.

The function doesn't return anything.

6 Changelog

1.0 : Initial release.

References

Lucchetti, Riccardo. 2026. An improved density approximation for the Zivot-Andrews test. *Economics Letters* <https://www.sciencedirect.com/science/article/pii/S0165176526000273>.

Nelson, Charles R and Charles R Plosser. 1982. Trends and random walks in macroeconomic time series: some evidence and implications. *Journal of Monetary Economics* 10 (2):139–162.

Perron, Pierre. 1989. The great crash, the oil price shock, and the unit root hypothesis. *Econometrica* :1361–1401.

Zivot, Eric and Donald W. K. Andrews. 1992. Further evidence on the great crash, the oil-price shock, and the unit-root hypothesis. *Journal of Business and Economic Statistics* 20 (1):25–44.