
Kalman ‘secrets’

Allin Cottrell

August 8, 2022

1 Introduction

This note describes new functionality for state space models available in gretl 2022b but (de-
liberately) not yet documented. Both the underlying code and the user interface are still open
to modification in light of testing, bug reports and users’ suggestions. Note that as things
stand the revised code is 100 percent backward-compatible: you should get exactly the same
results as before from existing scripts, unless you engage any new options. No user interfaces
have been changed other than to add new options.

To set the scene, here’s a reminder of the basic linear, Gaussian state space model supported
by gretl. (We also support certain extensions, which will be referenced where relevant.) The
first equation is the observation or measurement equation, the second is the state transition
equation.

yt = Ztαt + εt
αt+1 = Ttαt + ηt

yt is n×1; αt is r×1; Zt and Tt are conformable matrices that may or may not be time-varying;
and εt and ηt are Gaussian vector disturbances.

2 Long story short

There’s a lot that can be said on this topic, but here’s what is probably the bottom line for
many users. If you have scripts where you set diffuse = 1 on your Kalman bundle you can
now try diffuse = 2 instead. This invokes the new “exact initial” method for state space
models with a diffuse initializer. Don’t expect identical results from the new code, but to the
extent results differ the new ones should be somewhat more accurate. (If results differ wildly
you’ve probably found a bug; please report it!) You may also find that the new code is faster; it
should be less likely to get hung up on numerical problems that delay or prevent convergence
of ML estimation.

3 Variance of disturbances

For reference below, we note three common representations of the variance of the disturbances
in the two equations above.

1. The “basic” case (STD_VAR): εt and ηt are assumed to be mutually uncorrelated, and we
write their respective variance matrices as V(εt) (n×n) and V(ηt) (r ×r). These variance
matrices, and others noted below, may or may not be time-varying.

2. The “de Jong” case (DJ_VAR): write εt = Gtνt and ηt = Htνt , where Gt is n×p, Ht is r ×p
and p is the length of the underlying disturbance vector νt . This formulation allows for
correlation of the disturbances across the equations, if HtG′t is non-zero.

1

3. The “Durbin–Koopman” case (DK_VAR): as in the first case assume that the disturbances
are uncorrelated across the equations, but write ηt = Rtξt and V(ηt) = RtQtR′t , where Rt
is a selection matrix and Qt = V(ξt). Let m ≤ r denote the dimension of ξt . Then Qt is
m×m and Rt is r ×m. This allows for the possibility that there are fewer disturbances
to the state than elements of the state vector.

4 The “diffuse” case

To provide context for gretl’s new state-space functionality we need one more piece of termi-
nology. We describe a state space model as “diffuse” if the model is non-stationary and we
have no prior information to pin down the variance of αt , which is usually denoted by Pt . In
that case there are two possible approaches. The “traditional” one is to ascribe a very large
variance to the initial Pt , as in P0 = κ × Ir where κ is, say, 107. This is what gretl has done, up
to version 2022a. But while it seems to work fairly well in most cases it is nowadays generally
deprecated in favor of one or other “exact initial” method. Such methods depend on derivation
of the properties of the Kalman filter (and smoother) in the limit as the aforementioned “very
large” variance tends to infinity.

5 New features

We can now identify the new features in gretl’s support for state space models.

• While the disturbance variants labeled STD_VAR and DJ_VAR above have long been sup-
ported, the DK_VAR representation is now also available.

• Two variants of the “exact initial” treatment of the diffuse case are now implemented and
available as options.

5.1 Disturbance variance options

As described in the Gretl User’s Guide, a state space bundle is obtained via the ksetup()
function, which takes four required arguments plus an optional fifth. The required arguments
are obsy (y), obsymat (Z), statemat (T) and statevar.

If just four arguments are provided the STD_VAR variance case is assumed, and statevar is
taken to be the r × r matrix V(η). If there’s a disturbance term in the observation equation its
n×n variance matrix V(ε) is then added to the bundle separately under the key obsvar.

If a fifth argument is supplied to ksetup(), to this point we have assumed the DJ_VAR variance
case: statemat is interpreted as the r × p factor H and the last argument as G. That is still
the handling of the 5-argument call, but it can now be inflected by appending a sixth, boolean
argument. If that has a non-zero value it establishes the DK_VAR case: statevar is taken to
be Q and the fifth argument taken to be R. Note that in this case obsvar should be added
separately as in STD_VAR.

The following statements illustrate the three cases.

STD_VAR
bundle kb1 = ksetup(y, Z’, T, Veta)
kb1.obsvar = Veps # if wanted

DJ_VAR
bundle kb2 = ksetup(y, Z’, T, H, G)

DK_VAR
bundle kb3 = ksetup(y, Z’, T, Q, R, 1)
kb3.obsvar = Veps # if wanted

2

5.2 Exact initial options

It would be nice if there were one canonical approach to diffuse state space models that worked
well for all cases but unfortunately that does not seem to be true. In libgretl we have imple-
mented two such methods: the “univariate approach to multivariate observable” advocated by
Durbin and Koopman (2012) and the augmented Kalman method set out by de Jong (1991)
and de Jong and Chu-Chun-Lin (2003). The first of these is used in the KFAS package for R
(Helske, 2017) and the second by the sspace command in Stata.1 We refer to them via the
labels univariate and dejong below.

The univariate approach handles a vector observable by “unpacking” it and substituting
scalar calculations for matrix ones so far as possible. Durbin and Koopman claim it is faster
than the alternatives, and this seems to be borne out in our testing so far. It is also able
to deal in a straightforward way with incomplete observations (where some but not all ele-
ments of yt are missing at time t): it can utilize any non-missing elements while ignoring
the missing ones. However, it runs into complications if (a) the variance matrix of the ob-
servation disturbances is not diagonal and/or (b) the disturbances are correlated between the
state and observation equations. Case (a) can be handled at the cost of some extra prelimi-
nary computation—transforming y and Z to induce a diagonal variance matrix—and this is
automatically carried out by gretl if needed. Handling case (b) is more bothersome, requiring
augmentation of the state; this is supported by KFAS but not by gretl.

The dejong approach has no problem with the variance cases (a) and (b) mentioned above.
However, it’s not clear how incomplete observations can be handled, and at present observa-
tions with any missing elements are ignored.

In short, there are cases where univariate is probably better, and cases that are not handled
by univariate but where dejong works fine. Hence our decision to implement both methods.

Table 1 sets out the various cases that arise via combination of “code” (where legacy indicates
the Kalman code as of gretl 2022a) and “diffuse status” (i.e. whether the model is diffuse, and if
so how it is handled). Note that although the primary virtue of univariate and dejong is their
handling of the exact diffuse case, these methods should be able to handle the non-diffuse case
and the traditional “κ-diffuse” case (with their “exact” mode turned off internally).

non-diffuse κ-diffuse exact diffuse

code diffuse=0 diffuse=1 diffuse=2

legacy 1 2 NA

univariate 4 5 6

dejong 7 8 9

Table 1: Cross-tabulation of code-path and diffuse status. Numbers in cells are used for reference in
the text.

The case used depends on various points, the primary one being the diffuse integer member
of the state space bundle, which defaults to 0 but can be set to 1 or 2.

• diffuse=0: case 1 is the default (for backward compatibility) but case 4 or 7 can be
selected, by adding univariate=1 or dejong=1 to the bundle.

• diffuse=1: case 2 is the default but case 5 or 8 can be selected as above.

• diffuse=2: if the DJ_VAR variance representation is selected the case is 9; otherwise it
defaults to 6 but can be switched to 9 via dejong=1.

1See https://www.stata.com/manuals/tssspace.pdf.

3

https://www.stata.com/manuals/tssspace.pdf

For cases in the same column—namely {1,4,7}, {2,5,8} and {6,9}—results from kfilter(),
ksmooth() and kdsmooth() should in principle be the same across the code-paths but in
practice there are bound to be slight differences due to the differing algorithms employed.
And note that slight differences at that level may be somewhat amplified by iterated filtering
as in ML estimation. That said, substantial within-column differences probably signal a bug in
one or more of the code-paths.

Differences across columns 2 and 3 are of course expected; see section 2 above.

6 Testing

Here are some questions we’re interested in, for anyone willing to test the new code.

1. Are there any instances where results from cases 4 or 7 differ substantially from case 1?
Or where results are similar but case 1 is substantially faster than the others?

2. Are there any instances where results from cases 5 or 8 differ substantially from case 2?
Or where results are similar but case 2 is substantially faster than the others?

3. Are there any instances where results from cases 6 and 9 differ substantially?

4. Is there a systematic speed difference between cases 6 and 9?

If the answers to questions 1 and 2 turn out to be negative, we should be able to scrap the
legacy code-path in a future gretl release. Answers to questions 3 and 4 will be helpful in
debugging the new methods, and in deciding whether univariate or dejong should be the
default when they are both applicable.

As an aid for testing, some of the switches that can be set via script can also be set “globally”
via environment variables. These are shown in Table 2.

KALMAN_UNIVAR Equivalent to univariate=1 in a script. Ignored if DJ_VAR is in
force.

KALMAN_DEJONG Equivalent to dejong=1 in a script.

KALMAN_EXACT If diffuse=1 is found in a script, it will be automatically “pro-
moted” to exact diffuse.

KALMAN_TRACE Shows the Kalman-related functions being called (0=off, 1=on).
Useful if you’re in any doubt as to which code-path is being fol-
lowed.

KALMAN_DEBUG Debugging info to stderr (0=none, 1=some, 2=more).

Table 2: Environment variables that can be used to influence state space models

References

Durbin, J. and S. J. Koopman (2012) Time Series Analysis by State Space Methods, Oxford:
Oxford University Press, second edn.

Helske, J. (2017) ‘KFAS: Exponential family state space models in R’, Journal of Statistical Soft-
ware 78(10): 1–39. URL https://doi.org/10.18637/jss.v078.i10.

de Jong, P. (1991) ‘The diffuse Kalman filter’, The Annals of Statistics 19: 1073–1083.

de Jong, P. and S. Chu-Chun-Lin (2003) ‘Smoothing with an unknown initial condition’, Journal
of Time Series Analysis 24(2): 141–148.

4

https://doi.org/10.18637/jss.v078.i10

	1 Introduction
	2 Long story short
	3 Variance of disturbances
	4 The ``diffuse'' case
	5 New features
	5.1 Disturbance variance options
	5.2 Exact initial options

	6 Testing

