
The Kalman filter in gretl: old syntax

Allin Cottrell and Riccardo “Jack” Lucchetti

June 21, 2016

This document—which originally appeared as Chapter 30 of the Gretl User’s Guide—describes the
syntax for using the Kalman filter that was available in gretl prior to version 2016c (June, 2016).
We believe the new syntax is superior, but we are archiving the old documentation in case anyone
needs it.

1 Preamble

The Kalman filter has been used “behind the scenes” in gretl for quite some time, in computing
ARMA estimates. But user access to the Kalman filter is new and it has not yet been tested to any
great extent. We have run some tests of relatively simple cases against the benchmark of SsfPack
Basic. This is state-space software written by Koopman, Shephard and Doornik and documented in
Koopman, Shephard and Doornik (1999). It requires Doornik’s ox program. Both ox and SsfPack
are available as free downloads for academic use but neither is open-source; see http://www.
ssfpack.com. Since Koopman is one of the leading researchers in this area, presumably the results
from SsfPack are generally reliable. To date we have been able to replicate the SsfPack results in
gretl with a high degree of precision.

We welcome both success reports and bug reports.

2 Notation

It seems that in econometrics everyone is happy with y = Xβ + u, but we can’t, as a community,
make up our minds on a standard notation for state-space models. Harvey (1989), Hamilton (1994),
Harvey and Proietti (2005) and Pollock (1999) all use different conventions. The notation used here
is based on James Hamilton’s, with slight variations.

A state-space model can be written as

ξξξt+1 = Ftξξξt + vt (1)

yt = A′txt +H′tξξξt +wt (2)

where (1) is the state transition equation and (2) is the observation or measurement equation. The
state vector, ξξξt , is (r × 1) and the vector of observables, yt , is (n × 1); xt is a (k × 1) vector of
exogenous variables. The (r ×1) vector vt and the (n×1) vector wt are assumed to be vector white
noise:

E(vtv′s) = Qt for t = s, otherwise 0

E(wtw′s) = Rt for t = s, otherwise 0

The number of time-series observations will be denoted by T . In the special case when Ft = F,
Ht = H, At = A, Qt = Q and Rt = R for all t, the model is said to be time-invariant.

1

http://www.ssfpack.com
http://www.ssfpack.com


2.1 The Kalman recursions

Using this notation, and assuming for the moment that vt and wt are mutually independent, the
Kalman recursions can be written as follows.

Initialization is via the unconditional mean and variance of ξξξ1:

ξ̂ξξ1|0 = E(ξξξ1)

P1|0 = E
{[
ξξξ1 − E(ξξξ1)

] [
ξξξ1 − E(ξξξ1)

]′}
Usually these are given by ξ̂ξξ1|0 = 0 and

vec(P1|0) = [Ir2 − F⊗ F]−1 · vec(Q) (3)

but see below for further discussion of the initial variance.

Iteration then proceeds in two steps.1 First we update the estimate of the state

ξ̂ξξt+1|t = Ftξ̂ξξt|t−1 +Ktet (4)

where et is the prediction error for the observable:

et = yt −A′txt −H′tξ̂ξξt|t−1

and Kt is the gain matrix, given by
Kt = FtPt|t−1HtΣΣΣ−1

t (5)

with ΣΣΣt = H′tPt|t−1Ht + Rt

The second step then updates the estimate of the variance of the state using

Pt+1|t = FtPt|t−1F′t −KtΣΣΣtK′t +Qt (6)

2.2 Cross-correlated disturbances

The formulation given above assumes mutual independence of the disturbances in the state and
observation equations, vt and wt . This assumption holds good in many practical applications, but
a more general formulation allows for cross-correlation. In place of (1)–(2) we may write

ξξξt+1 = Ftξξξt + Btεεεt
yt = A′txt +H′tξξξt + Ctεεεt

where εεεt is a (p × 1) disturbance vector, all the elements of which have unit variance, Bt is (r × p)
and Ct is (n× p).

The no-correlation case is nested thus: define v∗t and w∗t as modified versions of vt and wt , scaled
such that each element has unit variance, and let

εεεt =
[

v∗t
w∗t

]

so that p = r +n. Then (suppressing time subscripts for simplicity) let

B =
[ ΓΓΓ r×r .... 0r×n

]
C =

[
0n×r

.... ΛΛΛn×n ]
1For a justification of the following formulae see the classic book by Anderson and Moore (1979) or, for a more

modern treatment, Pollock (1999) or Hamilton (1994). A transcription of R. E. Kalman’s original paper (Kalman, 1960) is
available at http://www.cs.unc.edu/~welch/kalman/kalmanPaper.html.

2

http://www.cs.unc.edu/~welch/kalman/kalmanPaper.html


where ΓΓΓ and ΛΛΛ are lower triangular matrices satisfying Q = ΓΓΓ ΓΓΓ ′ and R = ΛΛΛΛΛΛ′ respectively. The zero
sub-matrices in the above expressions for B and C produce the case of mutual independence; this
corresponds to the condition BC′ = 0.

In the general case p is not necessarily equal to r + n, and BC′ may be non-zero. This means that
the Kalman gain equation (5) must be modified as

Kt = (FtPt|t−1Ht + BtC′t)ΣΣΣ−1
t (7)

Otherwise, the equations given earlier hold good, if we write BB′ in place of Q and CC′ in place of
R.

In the account of gretl’s Kalman facility below we take the uncorrelated case as the baseline, but
add remarks on how to handle the correlated case where applicable.

3 Intended usage

The Kalman filter can be used in three ways: two of these are the classic forward and backward
pass, or filtering and smoothing respectively; the third use is simulation. In the filtering/smoothing
case you have the data yt and you want to reconstruct the states ξξξt (and the forecast errors as a by-
product), but we may also have a computational apparatus that does the reverse: given artificially-
generated series wt and vt , generate the states ξξξt (and the observables yt as a by-product).

The usefulness of the classical filter is well known; the usefulness of the Kalman filter as a sim-
ulation tool may be huge too. Think for instance of Monte Carlo experiments, simulation-based
inference—see Gourieroux and Monfort (1996)—or Bayesian methods, especially in the context of
the estimation of DSGE models.

4 Overview of syntax

Using the Kalman filter in gretl is a two-step process. First you set up your filter, using a block
of commands starting with kalman and ending with end kalman—much like the gmm command.
Then you invoke the functions kfilter, ksmooth or ksimul to do the actual work. The next two
sections expand on these points.

5 Defining the filter

Each line within the kalman . . . end kalman block takes the form

keyword value

where keyword represents a matrix, as shown below. (An additional matrix which may be useful in
some cases is introduced later under the heading “Constant term in the state transition”.)

Keyword Symbol Dimensions

obsy y T ×n
obsymat H r ×n
obsx x T × k
obsxmat A k×n
obsvar R n×n
statemat F r × r
statevar Q r × r
inistate ξ̂ξξ1|0 r × 1

inivar P1|0 r × r

3



For the data matrices y and x the corresponding value may be the name of a predefined matrix, the
name of a data series, or the name of a list of series.2

For the other inputs, value may be the name of a predefined matrix or, if the input in question
happens to be (1×1), the name of a scalar variable or a numerical constant. If the value of a
coefficient matrix is given as the name of a matrix or scalar variable, the input is not “hard-wired”
into the Kalman structure, rather a record is made of the name of the variable and on each run
of a Kalman function (as described below) its value is re-read. It is therefore possible to write one
kalman block and then do several filtering or smoothing passes using different sets of coefficients.3

An example of this technique is provided later, in the example scripts 1 and 2. This facility to alter
the values of the coefficients between runs of the filter is to be distinguished from the case of
time-varying matrices, which is discussed below.

Not all of the above-mentioned inputs need be specified in every case; some are optional. (In
addition, you can specify the matrices in any order.) The mandatory elements are y, H, F and Q, so
the minimal kalman block looks like this:

kalman
obsy y
obsymat H
statemat F
statevar Q

end kalman

The optional matrices are listed below, along with the implication of omitting the given matrix.

Keyword If omitted. . .

obsx no exogenous variables in observation equation

obsxmat no exogenous variables in observation equation

obsvar no disturbance term in observation equation

inistate ξ̂ξξ1|0 is set to a zero vector

inivar P1|0 is set automatically

It might appear that the obsx (x) and obsxmat (A) matrices must go together—either both are
given or neither is given. But an exception is granted for convenience. If the observation equation
includes a constant but no additional exogenous variables, you can give a (1×n) value for A without
having to specify obsx. More generally, if the row dimension of A is 1 greater than the column
dimension of x, it is assumed that the first element of A is associated with an implicit column of
1s.

Regarding the automatic initialization of P1|0 (in case no inivar input is given): by default this is
done as in equation (3). However, this method is applicable only if all the eigenvalues of F lie inside
the unit circle. If this condition is not satisfied we instead apply a diffuse prior, setting P1|0 = κIr
with κ = 107. If you wish to impose this diffuse prior from the outset, append the option flag
--diffuse to the end kalman statement.4

5.1 Time-varying matrices

Any or all of the matrices obsymat, obsxmat, obsvar, statemat and statevar may be time-
varying. In that case the value corresponding to the matrix keyword should be given in a special

2Note that the data matrices obsy and obsx have T rows. That is, the column vectors yt and xt in (1) and (2) are in
fact the transposes of the t-dated rows of the full matrices.

3Note, however, that the dimensions of the various input matrices are defined via the initial kalman set-up and it is
an error if any of the matrices are changed in size.

4Initialization of the Kalman filter outside of the case where equation (3) applies has been the subject of much
discussion in the literature—see for example de Jong (1991), Koopman (1997). At present gretl does not implement any
of the more elaborate proposals that have been made.

4



form: the name of an existing matrix plus a function call which modifies that matrix, separated by
a semicolon. Note that in this case you must use a matrix variable, even if the matrix in question
happens to be 1× 1.

For example, suppose the matrix H is time-varying. Then we might write

obsymat H ; modify_H(&H, theta)

where modify_H is a user-defined function which modifies matrix H (and theta is a suitable addi-
tional argument to that function, if required).

The above is just an illustration: the matrix argument does not have to come first, and the function
can have as many arguments as you like. The essential point is that the function must modify the
specified matrix, which requires that it be given as an argument in “pointer” form (preceded by &).
The function need not return any value directly; if it does, that value is ignored.

Such matrix-modifying functions will be called at each time-step of the filter operation, prior to
performing any calculations. They have access to the current time-step of the Kalman filter via the
internal variable $kalman_t, which has value 1 on the first step, 2 on the second, and so on, up
to step T . They also have access to the previous n-vector of forecast errors, et−1, under the name
$kalman_uhat. When t = 1 this will be a zero vector.

5.2 Correlated disturbances

Defining a filter in which the disturbances vt and wt are correlated involves one modification to the
account given above. If you append the --cross option flag to the end kalman statement, then the
matrices corresponding to the keywords statevar and obsvar are interpreted not as Q and R but
rather as B and C as discussed in section 2.1. Gretl then computes Q = BB′ and R = CC′ as well as
the cross-product BC′ and utilizes the modified expression for the gain as given in equation (7). As
mentioned above, B should be (r × p) and C should be (n× p), where p is the number of elements
in the combined disturbance vector εεεt .

5.3 Constant term in the state transition

In some applications it is useful to be able to represent a constant term in the state transition
equation explicitly; that is, equation (1) becomes

ξξξt+1 = µµµ + Ftξξξt + vt (8)

This is never strictly necessary; the system (1) and (2) is general enough to accommodate such a
term, by absorbing it as an extra (unvarying) element in the state vector. But this comes at the
cost of expanding all the matrices that touch the state (ξξξ, F, v, Q, H), making the model relatively
awkward to formulate and forecasts relatively expensive to compute.

As a simple illustration, consider a univariate model in which the state, st , is just a random walk
with drift µ and the observed variable, yt , is the state plus white noise:

st+1 = µ + st + vt (9)

yt = st +wt (10)

Putting this into the standard form of (1) and (2) we get:[
st+1

µ

]
=
[

1 1

0 1

][
st
µ

]
+
[
vt
0

]
, Q =

[
σ 2
v 0

0 0

]

yt =
[

1 0
][ st

µ

]
+wt

5



In such a simple case the notational and computational burden is not very great; nonetheless it is
clearly more “natural” to express this system in the form of (9) and (10) and in a multivariate model
the gain in parsimony could be substantial.

For this reason we support the use of an additional named matrix in the kalman setup, namely
stconst. This corresponds to µµµ in equation (8); it should be an r × 1 vector (or if r = 1 may be
given as the name of a scalar variable). The use of stconst in setting up a filter corresponding to
(9) and (10) is shown below.

matrix H = {1}
matrix R = {1}
matrix F = {1}
matrix Q = {1}
matrix mu = {0.05}

kalman
obsy y
obsymat H
obsvar R
statemat F
statevar Q
stconst mu

end kalman

5.4 Handling of missing values

It is acceptable for the data matrices, obsy and obsx, to contain missing values. In this case the
filtering operation will work around the missing values, and the ksmooth function can be used to
obtain estimates of these values. However, there are two points to note.

First, gretl’s default behavior is to skip missing observations when constructing matrices from data
series. To change this, use the set command thus:

set skip_missing off

Second, the handling of missing values is not yet quite right for the case where the observable
vector yt contains more than one element. At present, if any of the elements of yt are missing
the entire observation is ignored. Clearly it should be possible to make use of any non-missing
elements, and this is not very difficult in principle, it’s just awkward and is not implemented yet.

5.5 Persistence and identity of the filter

At present there is no facility to create a “named filter”. Only one filter can exist at any point
in time, namely the one created by the last kalman block.5 If a filter is already defined, and you
give a new kalman block, the old filter is over-written. Otherwise the existing filter persists (and
remains available for the kfilter, ksmooth and ksimul functions) until either (a) the gretl session
is terminated or (b) the command delete kalman is given.

6 The kfilter function

Once a filter is established, as discussed in the previous section, kfilter can be used to run a
forward, forecasting pass. This function returns a scalar code: 0 for successful completion, or 1
if numerical problems were encountered. On successful completion, two scalar accessor variables

5This is not quite true: more precisely, there can be no more than one Kalman filter at each level of function execution.
That is, if a gretl script creates a Kalman filter, a user-defined function called from that script may also create a filter,
without interfering with the original one.

6



become available: $kalman_lnl, which gives the overall log-likelihood under the joint normality
assumption,

` = −1
2

nT log(2π)+
T∑
t=1

log |ΣΣΣt| + T∑
t=1

e′tΣΣΣ−1
t et


and $kalman_s2, which gives the estimated variance,

σ̂ 2 = 1
nT

T∑
t=1

e′tΣΣΣ−1
t et

(but see below for modifications to these formulae for the case of a diffuse prior). In addition the
accessor $kalman_llt gives a (T × 1) vector, element t of which is

`t = −
1
2

[
n log(2π)+ log |ΣΣΣt| + e′tΣΣΣ−1

t et
]

The kfilter function does not require any arguments, but up to five matrix quantities may be
retrieved via optional pointer arguments. Each of these matrices has T rows, one for each time-
step; the contents of the rows are shown in the following listing.

1. Forecast errors for the observable variables: e′t , n columns.

2. Variance matrix for the forecast errors: vech(ΣΣΣt)′, n(n+ 1)/2 columns.

3. Estimate of the state vector: ξ̂ξξ
′
t|t−1, r columns.

4. MSE of estimate of the state vector: vech(Pt|t−1)′, r(r + 1)/2 columns.

5. Kalman gain: vec(Kt)′, rn columns.

Unwanted trailing arguments can be omitted, otherwise unwanted arguments can be skipped by
using the keyword null. For example, the following call retrieves the forecast errors in the matrix
E and the estimate of the state vector in S:

matrix E S
kfilter(&E, null, &S)

Matrices given as pointer arguments do not have to be correctly dimensioned in advance; they will
be resized to receive the specified content.

Further note: in general, the arguments to kfilter should all be matrix-pointers, but under two
conditions you can give a pointer to a series variable instead. The conditions are: (i) the matrix
in question has just one column in context (for example, the first two matrices will have a single
column if the length of the observables vector, n, equals 1) and (ii) the time-series length of the
filter is equal to the current gretl sample size.

6.1 Likelihood under the diffuse prior

There seems to be general agreement in the literature that the log-likelihood calculation should
be modified in the case of a diffuse prior for P1|0. However, it is not clear to us that there is a
well-defined “correct” method for this. At present we emulate SsfPack (see Koopman et al. (1999)
and section 1). In case P1|0 = κIr , we set d = r and calculate

` = −1
2

(nT − d) log(2π)+
T∑
t=1

log |ΣΣΣt| + T∑
t=1

e′tΣΣΣ−1
t et − d log(κ)


and

σ̂ 2 = 1
nT − d

T∑
t=1

e′tΣΣΣ−1
t et

7



7 The ksmooth function

This function returns the (T × r ) matrix of smoothed estimates of the state vector—that is, esti-

mates based on all T observations: row t of this matrix holds ξ̂ξξ
′
t|T . This function has no required

arguments but it offers one optional matrix-pointer argument, which retrieves the variance of the
smoothed state estimate, Pt|T . The latter matrix is (T × r(r + 1)/2); each row is in transposed vech
form. Examples:

matrix S = ksmooth() # smoothed state only
matrix P
S = ksmooth(&P) # the variance is wanted

These values are computed via a backward pass of the filter, from t = T to t = 1, as follows:

Lt = Ft −KtH′t

ut−1 = HtΣΣΣ−1
t et + L′tut

Ut−1 = HtΣΣΣ−1
t H′t + L′tUtLt

ξ̂ξξt|T = ξ̂ξξt|t−1 + Pt|t−1ut−1

Pt|T = Pt|t−1 − Pt|t−1Ut−1Pt|t−1

with initial values uT = 0 and UT = 0.6

This iteration is preceded by a special forward pass in which the matrices Kt , ΣΣΣ−1
t , ξ̂ξξt|t−1 and Pt|t−1

are stored for all t. If F is time-varying, its values for all t are stored on the forward pass, and
similarly for H.

8 The ksimul function

This simulation function takes up to three arguments. The first, mandatory, argument is a (T × r )
matrix containing artificial disturbances for the state transition equation: row t of this matrix
represents v′t . If the current filter has a non-null R (obsvar) matrix, then the second argument
should be a (T × n) matrix containing artificial disturbances for the observation equation, on the
same pattern. Otherwise the second argument should be given as null. If r = 1 you may give a
series for the first argument, and if n = 1 a series is acceptable for the second argument.

Provided that the current filter does not include exogenous variables in the observation equation
(obsx), the T for simulation need not equal that defined by the original obsy data matrix: in effect T
is temporarily redefined by the row dimension of the first argument to ksimul. Once the simulation
is completed, the T value associated with the original data is restored.

The value returned by ksimul is a (T × n) matrix holding simulated values for the observables at
each time step. A third optional matrix-pointer argument allows you to retrieve a (T × r ) matrix
holding the simulated state vector. Examples:

matrix Y = ksimul(V) # obsvar is null
Y = ksimul(V, W) # obsvar is non-null
matrix S
Y = ksimul(V, null, &S) # the simulated state is wanted

The initial value ξξξ1 is calculated thus: we find the matrix T such that TT′ = P1|0 (as given by the
inivar element in the kalman block), multiply it into v1, and add the result to ξξξ1|0 (as given by
inistate).

If the disturbances are correlated across the two equations the arguments to ksimul must be
revised: the first argument should be a (T × p) matrix, each row of which represents εεε′t (see sec-
tion 2.1), and the second argument should be given as null.

6See I. Karibzhanov’s exposition at http://karibzhanov.com/help/kalcvs.htm.

8

http://karibzhanov.com/help/kalcvs.htm


9 Example 1: ARMA estimation

As is well known, the Kalman filter provides a very efficient way to compute the likelihood of ARMA
models; as an example, take an ARMA(1,1) model

yt = φyt−1 + εt + θεt−1

One of the ways the above equation can be cast in state-space form is by defining a latent process
ξt = (1−φL)−1εt . The observation equation corresponding to (2) is then

yt = ξt + θξt−1 (11)

and the state transition equation corresponding to (1) is[
ξt
ξt−1

]
=
[
φ 0

1 0

][
ξt−1

ξt−2

]
+
[
εt
0

]

The gretl syntax for a corresponding kalman block would be

matrix H = {1; theta}
matrix F = {phi, 0; 1, 0}
matrix Q = {s^2, 0; 0, 0}

kalman
obsy y
obsymat H
statemat F
statevar Q

end kalman

Note that the observation equation (11) does not include an “error term”; this is equivalent to saying
that V(wt) = 0 and, as a consequence, the kalman block does not include an obsvar keyword.

Once the filter is set up, all it takes to compute the log-likelihood for given values of φ, θ and
σ 2 is to execute the kfilter() function and use the $kalman_lnl accessor (which returns the
total log-likelihood) or, more appropriately if the likelihood has to be maximized through mle, the
$kalman_llt accessor, which returns the series of individual contribution to the log-likelihood for
each observation. An example is shown in script 1.

10 Example 2: local level model

Suppose we have a series yt = µt + εt , where µt is a random walk with normal increments of
variance σ 2

1 and εt is a normal white noise with variance σ 2
2 , independent of µt . This is known as

the “local level” model in Harvey’s (1989) terminology, and it can be cast in state-space form as
equations (1)-(2) with F = 1, vt ∼ N(0, σ 2

1 ), H = 1 and wt ∼ N(0, σ 2
2 ). The translation to a kalman

block is

kalman
obsy y
obsymat 1
statemat 1
statevar s2
obsvar s1

end kalman --diffuse

The two unknown parameters σ 2
1 and σ 2

2 can be estimated via maximum likelihood. Script 2 pro-
vides an example of simulation and estimation of such a model. For the sake of brevity, simulation
is carried out via ordinary gretl commands, rather than the state-space apparatus described above.

9



Example 1: ARMA estimation

function void arma11_via_kalman(series y)
/* parameter initalization */
phi = 0
theta = 0
sigma = 1

/* Kalman filter setup */
matrix H = {1; theta}
matrix F = {phi, 0; 1, 0}
matrix Q = {sigma^2, 0; 0, 0}

kalman
obsy y
obsymat H
statemat F
statevar Q

end kalman

/* maximum likelihood estimation */
mle logl = ERR ? NA : $kalman_llt

H[2] = theta
F[1,1] = phi
Q[1,1] = sigma^2
ERR = kfilter()
params phi theta sigma

end mle -h
end function

# ------------------------ main ---------------------------

open arma.gdt # open the "arma" example dataset
arma11_via_kalman(y) # estimate an arma(1,1) model
arma 1 1 ; y --nc # check via native command

10



The example contains two functions: the first one carries out the estimation of the unknown pa-
rameters σ 2

1 and σ 2
2 via maximum likelihood; the second one uses these estimates to compute

a smoothed estimate of the unobservable series µt under the name muhat. A plot of µt and its
estimate is presented in Figure 1.

By appending the following code snippet to the example in Table 2, one may check the results
against the R command StructTS.

foreign language=R --send-data
y <- gretldata[,"y"]
a <- StructTS(y, type="level")
a
StateFromR <- as.ts(tsSmooth(a))
gretl.export(StateFromR)

end foreign

append @dotdir/StateFromR.csv

ols muhat 0 StateFromR --simple

References

Anderson, B. and J. Moore (1979) Optimal Filtering, Upper Saddle River, NJ: Prentice-Hall.

Gourieroux, C. and A. Monfort (1996) Simulation-Based Econometric Methods, Oxford: Oxford Uni-
versity Press.

Hamilton, J. D. (1994) Time Series Analysis, Princeton, NJ: Princeton University Press.

Harvey, A. C. (1989) Forecasting, structural time series models and the Kalman filter, Cambridge:
Cambridge University Press.

Harvey, A. C. and T. Proietti (2005) Readings in Unobserved Component Models, Oxford: Oxford
University Press.

de Jong, P. (1991) ‘The diffuse Kalman filter’, The Annals of Statistics 19: 1073–1083.

Kalman, R. E. (1960) ‘A new approach to linear filtering and prediction problems’, Transactions of
the ASME–Journal of Basic Engineering 82(Series D): 35–45.

Koopman, S. J. (1997) ‘Exact initial Kalman filtering and smoothing for nonstationary time series
models’, Journal of the American Statistical Association 92: 1630–1638.

Koopman, S. J., N. Shephard and J. A. Doornik (1999) ‘Statistical algorithms for models in state
space using SsfPack 2.2’, Econometrics Journal 2: 107–160.

Pollock, D. S. G. (1999) A Handbook of Time-Series Analysis, Signal Processing and Dynamics, New
York: Academic Press.

11



Example 2: Local level model

function matrix local_level (series y)
/* starting values */
scalar s1 = 1
scalar s2 = 1

/* Kalman filter set-up */
kalman

obsy y
obsymat 1
statemat 1
statevar s2
obsvar s1

end kalman --diffuse

/* ML estimation */
mle ll = ERR ? NA : $kalman_llt

ERR = kfilter()
params s1 s2

end mle

return s1 ~ s2
end function

function series loclev_sm (series y, scalar s1, scalar s2)
/* return the smoothed estimate of \mu_t */
kalman

obsy y
obsymat 1
statemat 1
statevar s2
obsvar s1

end kalman --diffuse
series ret = ksmooth()
return ret

end function

/* -------------------- main script -------------------- */

nulldata 200
set seed 202020
setobs 1 1 --special
true_s1 = 0.25
true_s2 = 0.5
v = normal() * sqrt(true_s1)
w = normal() * sqrt(true_s2)
mu = 2 + cum(w)
y = mu + v

matrix Vars = local_level(y) # estimate the variances
muhat = loclev_sm(y, Vars[1], Vars[2]) # compute the smoothed state

12



-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

 0  50  100  150  200

mu
muhat

Figure 1: Local level model: µt and its smoothed estimate

13


	Preamble
	Notation
	The Kalman recursions
	Cross-correlated disturbances

	Intended usage
	Overview of syntax
	Defining the filter
	Time-varying matrices
	Correlated disturbances
	Constant term in the state transition
	Handling of missing values
	Persistence and identity of the filter

	The kfilter function
	Likelihood under the diffuse prior

	The ksmooth function
	The ksimul function
	Example 1: ARMA estimation
	Example 2: local level model

