
MIDAS in gretl

Allin Cottrell, Jack Lucchetti

September 19, 2017

These notes describes the state of play with regard to MIDAS (Mixed Data Sampling—see Ghy-
sels et al., 2004; Ghysels, 2015; Armesto et al., 2010) in gretl as of the 2017a release (March
2017). The points covered in these notes are not yet elaborated in the formal gretl docu-
mentation, but the relevant new commands and functions are described in the current Gretl
Command Reference.

1 Handling data of more than one frequency

The essential move in MIDAS is estimation of models including one or more independent
variables observed at a higher frequency than the dependent variable. Since a gretl dataset
formally handles only a single data frequency it may seem that we have a problem. However,
we have adopted a straightforward solution: a higher frequency series xH is represented by a
set of m series, each holding the value of xH in a sub-period of the “base” (lower-frequency)
period (where m is the ratio of the higher frequency to the lower).

This is most easily understood by means of an example. Suppose our base frequency is quar-
terly and we wish to include a monthly series in the analysis. Then a relevant fragment of the
gretl dataset might look as shown in Table 1. Here, gdpc96 is a quarterly series while indpro
is monthly, so m = 12/4 = 3 and the per-month values of indpro are identified by the suffix
_mn, n = 3,2,1.

gdpc96 indpro_m3 indpro_m2 indpro_m1

1947:1 1934.47 14.3650 14.2811 14.1973
1947:2 1932.28 14.3091 14.3091 14.2532
1947:3 1930.31 14.4209 14.3091 14.2253
1947:4 1960.70 14.8121 14.7562 14.5606
1948:1 1989.54 14.7563 14.9240 14.8960
1948:2 2021.85 15.2313 15.0357 14.7842

Table 1: A slice of MIDAS data

To recover the actual monthly time series for indpro one must read the three relevant series
right-to-left by row. At first glance this may seem perverse, but in fact it is the most convenient
setup for MIDAS analysis. In such models, the high-frequency variables are represented by
lists of lags, and of course in econometrics it is standard to give the most recent lag first
(xt−1, xt−2, . . .).

One can construct such a dataset manually from “raw” sources using hansl’s matrix-handling
methods or the join command (see Appendix A for illustrations), but we have added native
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support for the common cases shown below.

base frequency higher frequency

annual quarterly or monthly

quarterly monthly or daily

monthly daily

The examples below mostly pertain to the case of quarterly plus monthly data. Appendix B
has details on our handling of daily data.

The new native methods support creation of a MIDAS-ready dataset in either of two ways:
by selective importation of series from a database, or by creating two datasets of different
frequencies then merging them.

Importation from a database

Here’s a simple example, in which we draw from the fedstl (St Louis Fed) database which is
supplied in the gretl distribution:

clear
open fedstl.bin
data gdpc96
data indpro --compact=spread
store gdp_indpro.gdt

Since gdpc96 is a quarterly series, its importation via the data command establishes a quar-
terly dataset. Then the MIDAS work is done by the option --compact=spread for the second
invocation of data. This “spreads” the series indpro—which is monthly at source—into three
quarterly series, exactly as shown in Table 1.

Merging two datasets

In this case we consider an Excel file provided by Eric Ghysels in his MIDAS Matlab Toolbox,1

namely mydata.xlsx. This contains quarterly real GDP in Sheet1 and monthly non-farm pay-
roll employment in Sheet2. A hansl script to build a MIDAS-style file named gdp_midas.gdt
is shown in Listing 1.

Note that both series are simply named VALUE in the source file, so we use gretl’s rename
command to set distinct and meaningful names. The heavy lifting is done here by the line

dataset compact 4 spread

which tells gretl to compact an entire dataset (in this case, as it happens, just containing one
series) to quarterly frequency using the “spread” method. Once this is done, it is straightfor-
ward to append the compacted data to the quarterly GDP dataset.

We will put this dataset to use in subsequent sections. Note that it is provided in the gretl
package (gdp_midas, which you can find under the Gretl tab in the practice datafiles window
in the gretl GUI).

1See http://www.unc.edu/~eghysels/ for links.
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Listing 1: Building a gretl MIDAS dataset via merger

# sheet 2 contains monthly employment data
open MIDASv2.0/mydata.xlsx --sheet=2
rename VALUE payems
dataset compact 4 spread
# limit to the sample range of the GDP data
smpl 1947:1 2011:2
setinfo payems_m3 --description="Non-farm payroll employment, month 3 of quarter"
setinfo payems_m2 --description="Non-farm payroll employment, month 2 of quarter"
setinfo payems_m1 --description="Non-farm payroll employment, month 1 of quarter"
store payroll_midas.gdt

# sheet 1 contains quarterly GDP data
open MIDASv2.0/mydata.xlsx --sheet=1
rename VALUE qgdp
setinfo qgdp --description="Real quarterly US GDP"
append payroll_midas.gdt
store gdp_midas.gdt

2 The notion of a “MIDAS list”

In the following two sections we’ll describe functions that (rather easily) do the right thing
if you wish to create lists of lags or first differences of high-frequency series. However, we
should first be clear about the correct domain for such functions, since they could produce
the most diabolical mash-up of your data if applied to the wrong sort of list argument—for
instance, a regular list containing distinct series, all observed at the “base frequency” of the
dataset.

So let us define a MIDAS list: this is a list of m series holding per-period values of a single
high-frequency series, arranged in the order of most recent first, as illustrated above. Given
the dataset shown in Table 1, an example of a correctly formulated MIDAS list would be

list INDPRO = indpro_m3 indpro_m2 indpro_m1

Or, since the monthly observations are already in the required order, we could define the list
by means of a “wildcard”:

list INDPRO = indpro_m*

Having created such a list, one can use the setinfo command to tell gretl that it’s a bona fide
MIDAS list:

setinfo INDPRO --midas

This will spare you some warnings that gretl would otherwise emit when you call some of
the functions described below. This step should not be necessary, however, if the series in
question are the product of a compact operation with the spread parameter.

3



Inspecting high-frequency data

The layout of high-frequency data shown in Table 1 is convenient for running regressions,
but not very convenient for inspecting and checking such data. We therefore provide some
methods for displaying MIDAS data at their “natural” frequency. Figure 1 shows the gretl main
window with the gdp_midas dataset loaded, along with the menu that pops up if you right-
click with the payems series highlighted. The items “Display values” and “Time series plot”
show the data on their original monthly calendar, while the “Display components” item shows
the three component series on a quarterly calendar, as in Table 1.

These methods are also available via the command line. For example, the commands

list PAYEMS = payems_*
print PAYEMS --byobs --midas
hfplot PAYEMS --with-lines --output=display

produce a monthly printout of the payroll employment data, followed by a monthly time-series
plot. (See section 7 for more on hfplot.)

Figure 1: MIDAS data menu

3 High-frequency lag lists

A basic requirement of MIDAS is the creation of lists of high-frequency lags for use on the
right-hand side of a regression specification. This is possible, but not very convenient, using
the long-standing behavior of gretl’s lags function; it is made easier by a dedicated variant of
that function described below.

For illustration we’ll consider an example presented in Ghysels’ Matlab implementation of
MIDAS: this uses 9 monthly lags of payroll employment, starting at lag 3, in a model for
quarterly GDP. The estimation period for this model starts in 1985Q1. At this observation,
the stipulation that we start at lag 3 means that the first (most recent) lag is employment for
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October 1984,2 and the 9-lag window means that we need to include monthly lags back to
February 1984. Let the per-month employment series be called x_m3, x_m2 and x_m1, and let
(quarterly) lags be represented by (-1), (-2) and so on. Then the terms we want are (reading
left-to-right by row):

. . x_m1(-1)

x_m3(-2) x_m2(-2) x_m1(-2)

x_m3(-3) x_m2(-3) x_m1(-3)

x_m3(-4) x_m2(-4) .

We could construct such a list in gretl using the following standard syntax. (Note that the third
argument of 1 to lags below tells gretl that we want the terms ordered “by lag” rather than
“by variable”; this is required to respect the order of the terms shown above.)

list X = x_m*
# create lags for 4 quarters, "by lag"
list XL = lags(4,X,1)
# convert the list to a matrix
matrix tmp = XL
# trim off the first two elements, and the last
tmp = tmp[3:11]
# and convert back to a list
XL = tmp

However, the following specialized syntax is more convenient:

list X = x_m*
setinfo X --midas
# create high-frequency lags 3 to 11
list XL = hflags(3, 11, X)

In the case of hflags the length of the list given as the third argument defines the “compaction
ratio” (m = 3 in this example); we can (in fact, must) specify the lags we want in high-frequency
terms; and ordering of the generated series by lag is automatic.

Word to the wise: do not use hflags on anything other than a MIDAS list as defined in
section 2, unless perhaps you have some special project in mind and really know what you are
doing.

Leads and nowcasting

Before leaving the topic of lags, it is worth commenting on the question of leads and so-called
“nowcasting”—that is, prediction of the current value of a lower-frequency variable before its
measurement becomes available.

In a regular dataset where all series are of the same frequency, lag 1 means the observation
from the previous period, lag 0 is equivalent to the current observation, and lag −1 (or lead 1)
is the observation for the next period into the relative future.

When considering high-frequency lags in the MIDAS context, however, there is no uniquely de-
termined high-frequency sub-period which is temporally coincident with a given low-frequency

2That is what Ghysels means, but see the sub-section on “Leads and nowcasting” below for a possible ambiguity
in this regard.
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period. The placement of high-frequency lag 0 therefore has to be a matter of convention. Un-
fortunately, there are two incompatible conventions in currently available MIDAS software, as
follows.

• High-frequency lag 0 corresponds to the first sub-period within the current low-frequency
period. This is what we find in Eric Ghysels’ MIDAS Matlab Toolbox; it’s also clearly stated
and explained in Armesto et al. (2010).

• High-frequency lag 0 corresponds to the last sub-period in the current low-frequency
period. This convention is employed in the midasr package for R.3

Consider, for example, the quarterly/monthly case. In Matlab, high-frequency (HF) lag 0 is the
first month of the current quarter, HF lag 1 is the last month of the prior quarter, and so on. In
midasr, however, HF lag 0 is the last month of the current quarter, HF lag 1 the middle month
of the quarter, and HF lag 3 is the first one to take you “back in time” relative to the start of
the current quarter, namely to the last month of the prior quarter.

In gretl we have chosen to employ the first of these conventions. So Lag 1 points to the most
recent sub-period in the previous base-frequency period, lag 0 points to the first sub-period in
the current period, and lag −1 to the second sub-period within the current period. Continuing
with the quarterly/monthly case, monthly observations for lags 0 and −1 are likely to become
available before a measurement for the quarterly variable is published (possibly also a monthly
value for lag −2). The first “truly future” lead does not occur until lag −3.

The hflags function supports negative lags. Suppose one wanted to use 9 lags of a high-
frequency variable, −1,0,1, . . . ,7, for nowcasting. Given a suitable MIDAS list, X, the following
would do the job:

list XLnow = hflags(-1, 7, X)

This means that one could generate a forecast for the current low-frequency period (which is
not yet completed and for which no observation is available) using data from two sub-periods
into the low-frequency period (e.g. the first two months of the quarter).

4 High-frequency first differences

When working with non-stationary data one may wish to take first differences, and in the
MIDAS context that probably means high-frequency differences of the high-frequency data.
Note that the ordinary gretl functions diff and ldiff will not do what is wanted for series
such as indpro, as shown in Table 1: these functions will give per-month quarterly differences
of the data (month 3 of the current quarter minus month 3 of the previous quarter, and so on).

To get the desired result one could create the differences before compacting the high-frequency
data but this may not be convenient, and it’s not compatible with the method of constructing
a MIDAS dataset shown in section 1. The alternative is to employ the specialized differencing
function hfdiff. This takes one required argument, a MIDAS list as defined in section 2. A
second, optional argument is a scalar multiplier (with default value 1.0); this permits scaling
the output series by a constant. There’s also an hfldiff function for creating high-frequency
log differences; this has the same syntax as hfdiff.

So for example, the following creates a list of high-frequency percentage changes (100 times
log-difference) then a list of high-frequency lags of the changes.

3See http://cran.r-project.org/web/packages/midasr/, and for documentation https://github.com/
mpiktas/midasr-user-guide/raw/master/midasr-user-guide.pdf.
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list X = indpro_*
setinfo X --midas
list dX = hfldiff(X, 100)
list dXL = hflags(3, 11, dX)

If you only need the series in the list dXL, however, you can nest these two function calls:

list dXL = hflags(3, 11, hfldiff(X, 100))

5 Parsimonious parameterizations

The simplest MIDAS regression specification—known as “unrestricted MIDAS” or U-MIDAS—
simply includes p lags of a high-frequency regressor, each with its own parameter to be es-
timated (which can be done via OLS). It is more common, however, to enforce parsimony by
making the individual coefficients on lagged high-frequency terms a function of a relatively
small number of hyperparameters. This presents a couple of computational questions: how
to calculate the per-lag coefficients given the values of the hyperparameters, and how best to
estimate the value of the hyperparameters?

Hansl is functional enough to allow a savvy user to address these questions from scratch,
but of course it’s helpful to have some built-in high-level functionality. At present gretl can
handle natively four commonly used parameterizations: normalized exponential Almon, nor-
malized beta (with or without a zero last coefficient) and plain (non-normalized) Almon poly-
nomial. The Almon variants take one or more parameters (two being a common choice), and
the beta takes either two or three parameters.4 All are handled by the functions mweights and
mgradient. These functions work as follows.

• mweights takes three arguments: the number of lags required (p), the k-vector of hy-
perparameters (θ), and an integer code or string indicating the method (see Table 2). It
returns a p-vector containing the coefficients.

• mgradient takes three arguments, just like mweights. However, this function returns a
p×kmatrix holding the (analytical) gradient of the p coefficients or weights with respect
to the k elements of θ.

Parameterization code string

Normalized exponential Almon 1 "nealmon"

Normalized beta, zero last lag 2 "beta0"

Normalized beta, non-zero last lag 3 "betan"

Almon polynomial 4 "almonp"

Table 2: MIDAS parameterizations

An additional function is provided for convenience: it is named mlincomb and it combines
mweights with the long-standing lincomb function, which takes a list (of series) argument
followed by a vector of coefficients and produces a series result, namely a linear combination
of the elements of the list. If we have a suitable list L available, we can do, for example,

series foo = mlincomb(L, theta, "beta0")

4Two is the standard case; see Appendix C for details.
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This is equivalent to

series foo = lincomb(L, mweights(nelem(L), theta, "beta0"))

but saves a little typing and some CPU cycles.

6 Estimating MIDAS models

Gretl offers a dedicated command, midasreg, for estimation of MIDAS models. (There’s a
corresponding item, MIDAS, under the Time series section of the Model menu in the gretl GUI.)
We begin by discussing that, then move on to possibilities for defining your own estimator.

The syntax of midasreg looks like this:

midasreg depvar xlist ; midas-terms [ options ]

The depvar slot takes the name (or series ID number) of the dependent variable, and xlist is
the list of regressors that are observed at the same frequency as the dependent variable; this
list may contain lags of the dependent variable. The midas-terms slot accepts one or more
specification(s) for high-frequency terms. Each of these specifications must conform to one or
other of the following patterns:

1 mds(mlist, minlag, maxlag, type, theta)

2 mdsl(llist, type, theta)

In case 1 mlist must be a MIDAS list, as defined above, which contains a full set of per-period
series (but no lags). Lags will be generated automatically, governed by the minlag and maxlag
(integer) arguments, which may be given as numerical values or the names of predefined scalar
variables. The integer (or string) type argument represents the type of parameterization; in
addition to the values 1 to 4 defined in Table 2 a value of 0 (or the string "umidas") indicates
unrestricted MIDAS.

In case 2 llist is assumed to be a list that already contains the required set of high-frequency
lags—as may be obtained via the hflags function described in section 3—hence minlag and
maxlag are not wanted.

The final theta argument is optional in most cases (implying an automatic initialization of the
hyperparameters). If this argument is given it must take one of the following forms:

1. The name of a matrix (vector) holding initial values for the hyperparameters, or a simple
expression which defines a matrix using scalars, such as {1, 5}.

2. The keyword null, indicating that an automatic initialization should be used (as happens
when this argument is omitted).

3. An integer value (in numerical form), indicating how many hyperparameters should be
used (which again calls for automatic initialization).

The third of these forms is required if you want automatic initialization in the Almon poly-
nomial case, since we need to know how many terms you wish to include. (In the normalized
exponential Almon case we default to the usual two hyperparameters if theta is omitted or
given as null.)

The midasreg syntax allows the user to specify multiple high-frequency predictors, if wanted:
these can have different lag specifications, different parameterizations and/or different fre-
quencies.

8



The options accepted by midasreg include --quiet (suppress printed output), --verbose
(show detail of iterations, if applicable) and --robust (use a HAC estimator of the Newey–
West type in computing standard errors). Two additional specialized options are described
below.

Examples of usage

Suppose we have a dependent variable named dy and a MIDAS list named dX, and we wish to
run a MIDAS regression using one lag of the dependent variable and high-frequency lags 1 to
10 of the series in dX. The following will produce U-MIDAS estimates:

midasreg dy const dy(-1) ; mds(dX, 1, 10, 0)

The next lines will produce estimates for the normalized exponential Almon parameterization
with two coefficients, both initialized to zero:

midasreg dy const dy(-1) ; mds(dX, 1, 10, "nealmon", {0,0})

In the examples above, the required lags will be added to the dataset automatically then deleted
after use. If you are estimating several models using a single set of MIDAS lags it is more effi-
cient to create the lags once and use the mdsl specifier. For example, the following estimates
three variant parameterizations (exponential Almon, beta with zero last lag, and beta with
non-zero last lag) on the same data:

list dXL = hflags(1, 10, dX)
midasreg dy 0 dy(-1) ; mdsl(dXL, "nealmon", {0,0})
midasreg dy 0 dy(-1) ; mdsl(dXL, "beta0", {1,5})
midasreg dy 0 dy(-1) ; mdsl(dXL, "betan", {1,1,0})

Any additional MIDAS terms should be separated by spaces, as in

midasreg dy const dy(-1) ; mds(dX,1,9,1,theta1) mds(Z,1,6,3,theta2)

Replication exercise

We give a substantive illustration of midasreg in Listing 2. This replicates the first practical
example discussed by Ghysels in the user’s guide titled MIDAS Matlab Toolbox,5 The dependent
variable is the quarterly log-difference of real GDP, named dy in our script. The independent
variables are the first lag of dy and monthly lags 3 to 11 of the monthly log-difference of
non-farm payroll employment (named dXL in our script). Formally, the model may be written
as

yt = α+ βyt−1 + γW(xτ−3, xτ−4, . . . , xτ−11;θ)+ εt
where W(·) is the weighting function associated with a given MIDAS specification, θ is a vec-
tor of hyperparameters, and τ represents “high-frequency time.” In the case of the non-
normalized Almon polynomial the γ coefficient is identically 1.0 and is omitted; and in the
U-MIDAS case the model comes down to

yt = α+ βyt−1 +
9∑
i=1

δixτ−i−2 + εt

5See Ghysels (2015). This document announces itself as Version 2.0 of the guide and is dated November 1, 2015.
The example we’re looking at appears on pages 24–26; the associated Matlab code can be found in the program
appADLMIDAS1.m.
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The script exercises all five of the parameterizations mentioned above,6 and in each case the
results of 9 pseudo-out-of-sample forecasts are recorded so that their Root Mean Square Errors
can be compared.

The data file used in the replication, gdp_midas.gdt, was contructed as described in section 1
(and as noted there, it is included in the current gretl package). Part of the output from the
replication script is shown in Listing 3. The γ coefficient is labeled HF_slope in the gretl
output.

For reference, output from Matlab (version R2016a for Linux) is available at http://gretl.
sourceforge.net/midas/matlab_output.txt. For the most part (in respect of regression
coefficients and auxiliary statistics such as R2 and forecast RMSEs), gretl’s output agrees with
that of Matlab to the extent that one can reasonably expect on nonlinear problems—that is, to
at least 4 significant digits in all but a few instances.7 Standard errors are not quite so close
across the two programs, particularly for the hyperparameters of the beta and exponential
Almon functions. We show these in Table 3.

2-param beta 3-param beta Exp Almon

Matlab gretl Matlab gretl Matlab gretl

const 0.135 0.140 0.143 0.146 0.135 0.140

dy(-1) 0.116 0.118 0.116 0.119 0.116 0.119

HF slope 0.559 0.575 0.566 0.582 0.562 0.575

θ1 0.067 0.106 0.022 0.027 2.695 6.263

θ2 9.662 17.140 1.884 2.934 0.586 1.655

θ3 0.022 0.027

Table 3: Comparison of standard errors from MIDAS regressions

Differences of this order are not unexpected, however, when different methods are used to
calculate the covariance matrix for a nonlinear regression. The Matlab standard errors are
based on a numerical approximation to the Hessian at convergence, while those produced by
gretl are based on a Gauss–Newton Regression, as discussed and recommended in Davidson
and MacKinnon (2004, chapter 6).

Underlying methods

The midasreg command calls one of several possible estimation methods in the background,
depending on the MIDAS specification(s). As shown in Listing 3, this is flagged in a line of
output immediately preceding the “Dependent variable” line. If the only specification type
is U-MIDAS, the method is OLS. Otherwise it is one of three variants of Nonlinear Least Squares.

• Levenberg–Marquardt. This is the back-end for gretl’s nls command.

• L-BFGS-B with conditional OLS. L-BFGS is a “limited memory” version of the BFGS opti-
mizer and the trailing “-B” means that it supports bounds on the parameters, which is
useful for reasons given below.

• Golden Section search with conditional OLS. This is a line search method, used only when
there is a just a single hyperparameter to estimate.

6The Matlab program includes an additional parameterization not supported by gretl, namely a step-function.
7Nonlinear results, even for a given software package, are subject to slight variation depending on the compiler

used and the exact versions of supporting numerical libraries.
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Listing 2: Script to replicate results given by Ghysels

set verbose off
open gdp_midas.gdt --quiet

# form the dependent variable
series dy = 100 * ldiff(qgdp)
# form list of high-frequency lagged log differences
list X = payems*
list dXL = hflags(3, 11, hfldiff(X, 100))
# initialize matrix to collect forecasts
matrix FC = {}

# estimation sample
smpl 1985:1 2009:1

print "=== unrestricted MIDAS (umidas) ==="
midasreg dy 0 dy(-1) ; mdsl(dXL, 0)
fcast --out-of-sample --static --quiet
FC ~= $fcast

print "=== normalized beta with zero last lag (beta0) ==="
midasreg dy 0 dy(-1) ; mdsl(dXL, 2, {1,5})
fcast --out-of-sample --static --quiet
FC ~= $fcast

print "=== normalized beta, non-zero last lag (betan) ==="
midasreg dy 0 dy(-1) ; mdsl(dXL, 3, {1,1,0})
fcast --out-of-sample --static --quiet
FC ~= $fcast

print "=== normalized exponential Almon (nealmon) ==="
midasreg dy 0 dy(-1) ; mdsl(dXL, 1, {0,0})
fcast --out-of-sample --static --quiet
FC ~= $fcast

print "=== Almon polynomial (almonp) ==="
midasreg dy 0 dy(-1) ; mdsl(dXL, 4, 4)
fcast --out-of-sample --static --quiet
FC ~= $fcast

smpl 2009:2 2011:2
matrix my = {dy}
print "Forecast RMSEs:"
printf " umidas %.4f\n", fcstats(my, FC[,1])[2]
printf " beta0 %.4f\n", fcstats(my, FC[,2])[2]
printf " betan %.4f\n", fcstats(my, FC[,3])[2]
printf " nealmon %.4f\n", fcstats(my, FC[,4])[2]
printf " almonp %.4f\n", fcstats(my, FC[,5])[2]

11



Listing 3: Replication of Ghysels’ results, partial output

=== normalized beta, non-zero last lag (betan) ===
Model 3: MIDAS (NLS), using observations 1985:1-2009:1 (T = 97)
Using L-BFGS-B with conditional OLS
Dependent variable: dy

estimate std. error t-ratio p-value
-------------------------------------------------------
const 0.748578 0.146404 5.113 1.74e-06 ***
dy_1 0.248055 0.118903 2.086 0.0398 **

MIDAS list dXL, high-frequency lags 3 to 11

HF_slope 1.72167 0.582076 2.958 0.0039 ***
Beta1 0.998501 0.0269479 37.05 1.10e-56 ***
Beta2 2.95148 2.93404 1.006 0.3171
Beta3 -0.0743143 0.0271273 -2.739 0.0074 ***

Sum squared resid 28.78262 S.E. of regression 0.562399
R-squared 0.356376 Adjusted R-squared 0.321012
Log-likelihood -78.71248 Akaike criterion 169.4250
Schwarz criterion 184.8732 Hannan-Quinn 175.6715

=== Almon polynomial (almonp) ===
Model 5: MIDAS (NLS), using observations 1985:1-2009:1 (T = 97)
Using Levenberg-Marquardt algorithm
Dependent variable: dy

estimate std. error t-ratio p-value
-------------------------------------------------------
const 0.741403 0.146433 5.063 2.14e-06 ***
dy_1 0.255099 0.119139 2.141 0.0349 **

MIDAS list dXL, high-frequency lags 3 to 11

Almon0 1.06035 1.53491 0.6908 0.4914
Almon1 0.193615 1.30812 0.1480 0.8827
Almon2 -0.140466 0.299446 -0.4691 0.6401
Almon3 0.0116034 0.0198686 0.5840 0.5607

Sum squared resid 28.66623 S.E. of regression 0.561261
R-squared 0.358979 Adjusted R-squared 0.323758
Log-likelihood -78.51596 Akaike criterion 169.0319
Schwarz criterion 184.4802 Hannan-Quinn 175.2784

Forecast RMSEs:
umidas 0.5424
beta0 0.5650
betan 0.5210
nealmon 0.5642
almonp 0.5329
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Levenberg–Marquardt is the default NLS method, but if the MIDAS specifications include any
of the beta variants or normalized exponential Almon we switch to L-BFGS-B, unless the user
gives the --levenberg option. The ability to set bounds on the hyperparameters via L-BFGS-B
is helpful, first because the beta parameters (other than the third one, if applicable) must be
non-negative but also because one is liable to run into numerical problems (in calculating the
weights and/or gradient) if their values become too extreme. For example, we have found it
useful to place bounds of −2 and +2 on the exponential Almon parameters.

Here’s what we mean by “conditional OLS” in the context of L-BFGS-B and line search: the
search algorithm itself is only responsible for optimizing the MIDAS hyperparameters, and
when the algorithm calls for calculation of the sum of squared residuals given a certain hy-
perparameter vector we optimize the remaining parameters (coefficients on base-frequency
regressors, slopes with respect to MIDAS terms) via OLS.

Other specialized options

We mentioned above the standard options that are supported by the midasreg command,
plus the --levenberg option; here we explain two additional options, --clamp-beta and
--breaktest.

First, a case can be made for a variant of the normalized beta parameterization that is even
more parsimonious than those discussed above: we take as a basis the two-parameter case
(which implies a zero coefficient on the last lag) and “clamp” the first parameter, θ1, at 1.0;
the second parameter is then optimized, subject to the constraint θ2 ≥ 1.0. This variant
allows for a wide range of patterns of declining weights while arguably avoiding over-fitting
of the weighting function to the estimation sample. Although it is bound to fit somewhat less
well than the more general beta specifications in-sample it may be more effective in out-of-
sample forecasting (Ghysels and Qian, 2016). This is supported under midasreg as follows:
you specify the two-parameter beta option (type = 2, see section 5) but add the option flag
--clamp-beta. At present this option is valid only if the regression contains a single MIDAS
specification.

Second, the --breaktest option can be used to carry out the Quandt Likelihood Ratio (QLR)
test for a structural break at the stage of running the final Gauss–Newton regression (to check
for convergence and calculate the covariance matrix of the parameter estimates). This can be
a useful aid to diagnosis, since non-homogeneity of the data over the estimation period can
lead to numerical problems in nonlinear estimation, besides compromising the forecasting
capacity of the resulting equation. For example, when this option is given with the command
to estimate the “BetaNZ” model shown in Listing 3, the following result is appended to the
standard output:

QLR test for structural break -
Null hypothesis: no structural break
Test statistic: chi-square(6) = 35.1745 at observation 2005:2
with asymptotic p-value = 0.000127727

Despite the strong evidence for a structural break, in this case the nonlinear estimator appears
to converge successfully, but one might wonder if a shorter estimation period could provide
better out-of-sample forecasts.

Defining your own MIDAS estimator

As explained above, the midasreg command is in effect a “wrapper” for various underlying
methods. Some users may wish to undo the wrapping. (This would be required if you wish to
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introduce any nonlinearity other than that associated with the stock MIDAS parameterizations,
or to define your own MIDAS parameterization).

Anyone with ambitions in this direction will presumably be quite familiar with the commands
and functions available in hansl, gretl’s scripting language, so we will not say much here be-
yond presenting a couple of examples. First we show how the nls command can be used,
along with the MIDAS-related functions described in section 5, to estimate a model with the
exponential Almon specification.

open gdp_midas.gdt --quiet
series dy = 100 * ldiff(qgdp)
series dy1 = dy(-1)
list X = payems*
list dXL = hflags(3, 11, hfldiff(X, 100))

smpl 1985:1 2009:1

# initialization via OLS
series mdX = mean(dXL)
ols dy 0 dy1 mdX --quiet
matrix b = $coeff | {0,0}’
scalar p = nelem(dXL)

# convenience matrix for computing gradient
matrix mdXL = {dXL}

# normalized exponential Almon via nls
nls dy = b[1] + b[2]*dy1 + b[3]*mdx
series mdx = mlincomb(dXL, b[4:], 1)
matrix grad = mgradient(p, b[4:], 1)
deriv b = {const, dy1, mdx} ~ (b[3] * mdXL * grad)
param_names "const dy(-1) HF_slope Almon1 Almon2"

end nls

Listing 4 presents a more ambitious example: we use GSSmin (Golden Section minimizer) to es-
timate a MIDAS model with the “one-parameter beta” specification (that is, the two-parameter
beta with θ1 clamped at 1). Note that while the function named beta1_SSR is specialized
to the given parameterization, midas_GNR is a fairly general means of calculating the Gauss–
Newton regression for an ADL(1) MIDAS model, and it could be generalized further without
much difficulty.

7 MIDAS-related plots

In the context of MIDAS analysis one may wish to produce time-series plots which show high-
and low-frequency data in correct registration (as in Figures 1 and 2 in Armesto et al., 2010).
This can be done using the hfplot command, which has the following syntax:

hfplot midas-list [; lflist ] options

The required argument is a MIDAS list, as defined above. Optionally, one or more lower-
frequency series (lflist) can be added to the plot following a semicolon. Supported options are
--with-lines, --time-series and --output. These have the same effects as with the gretl’s
gnuplot command.

An example based on Figure 1 in Armesto et al. (2010) is shown in Listing 5 and Figure 2.
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Listing 4: Manual MIDAS: one-parameter beta specification

set verbose off

function scalar beta1_SSR (scalar th2, const series y,
const series x, list L)

matrix theta = {1, th2}
series mdx = mlincomb(L, theta, 2)
# run OLS conditional on theta
ols y 0 x mdx --quiet
return $ess

end function

function matrix midas_GNR (const matrix theta, const series y,
const series x, list L, int type)

# Gauss-Newton regression
series mdx = mlincomb(L, theta, type)
ols y 0 x mdx --quiet
matrix b = $coeff
matrix u = {$uhat}
matrix mgrad = mgradient(nelem(L), theta, type)
matrix M = {const, x, mdx} ~ (b[3] * {L} * mgrad)
matrix V
set svd on # in case of strong collinearity
mols(u, M, null, &V)
return (b | theta) ~ sqrt(diag(V))

end function

/* main */

open gdp_midas.gdt --quiet

series dy = 100 * ldiff(qgdp)
series dy1 = dy(-1)
list dX = ld_payem*
list dXL = hflags(3, 11, dX)

# estimation sample
smpl 1985:1 2009:1

matrix b = {0, 1.01, 100}
# use Golden Section minimizer
SSR = GSSmin(b, beta1_SSR(b[1], dy, dy1, dXL), 1.0e-6)
printf "SSR (GSS) = %.15g\n", SSR
matrix theta = {1, b[1]}’ # column vector needed
matrix bse = midas_GNR(theta, dy, dy1, dXL, 2)
bse[4,2] = $nan # mask std error of clamped coefficient
modprint bse "const dy(-1) HF_slope Beta1 Beta2"
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Listing 5: Replication of a plot from Armesto et al

open gdp_midas.gdt

# form and label the dependent variable
series dy = log(qgdp/qgdp(-1))*400
setinfo dy --graph-name="GDP"

# form list of annualized HF differences
list X = payems*
list dX = hfldiff(X, 1200)
setinfo dX --graph-name="Payroll Employment"

smpl 1980:1 2009:1
hfplot dX ; dy --with-lines --time-series --output=display

-10

-5

 0

 5

 10

 15

 20

 1980  1985  1990  1995  2000  2005

Payroll Employment
GDP

Figure 2: Quarterly GDP and monthly Payroll Employment, annualized percentage changes
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Another sort of plot which may be useful shows the “gross” coefficients on the lags of the
high-frequency series in a MIDAS regression—that is, the normalized weights multiplied by
the HF_slope coefficient. After estimation of a MIDAS model in the gretl GUI this is available
via the item MIDAS coefficients under the Graphs menu in the model window. It is also easily
generated via script, since the $model bundle that becomes available following the midasreg
command contains a matrix, midas_coeffs, holding these coefficients. So the following is
sufficient to display the plot:

matrix m = $model.midas_coeffs
gnuplot --matrix=m --with-lp --fit=none --output=display \
{ set title "MIDAS coefficients"; set ylabel ’’; }

Caveat: this feature is at present available only for models with a single MIDAS specification.
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Appendix A: alternative MIDAS data methods

Importation via a column vector

Listing 6 illustrates how one can construct via hansl a “midas list” from a matrix (column vec-
tor) holding data of a higher frequency than the given dataset. In practice one would probably
read high frequency data from file using the mread function, but here we just construct an
artificial sequential vector.

Note the check in the high_freq_list function: we determine the current sample size, T, and
insist that the input matrix is suitably dimensioned, with a single column of length equal to T
times the compaction factor (here 3, for monthly to quarterly).

Listing 6: Create a midas list from a matrix

function list high_freq_list (const matrix x, int compfac, string vname)
list ret = null
scalar T = $nobs
if rows(x) != compfac*T || cols(x) != 1

funcerr "Invalid x matrix"
endif
matrix m = mreverse(mshape(x, compfac, T))’
loop i=1..compfac --quiet
scalar k = compfac + 1 - i
ret += genseries(sprintf("%s%d", vname, k), m[,i])

endloop
setinfo ret --midas
return ret

end function

# construct a little "quarterly" dataset
nulldata 12
setobs 4 1980:1

# generate "monthly" data, 1,2,...,36
matrix x = seq(1,3*$nobs)’
print x
# turn into midas list
list H = high_freq_list(x, 3, "test_m")
print H --byobs

The final command in the script should produce

test_m3 test_m2 test_m1

1980:1 3 2 1
1980:2 6 5 4
1980:3 9 8 7
...

This functionality is available in the built-in function hflist, which has the same signature as
the hansl prototype above.
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Importation via join

Listing 7 illustrates how join can be used to pull higher-frequency data (in this example,
quarterly) into a lower frequency (annual) dataset. The example is artificial, in that we have no
actual annual data in view; consider it just as “proof of concept.”

We begin by opening the Area-Wide Model (AWM) quarterly dataset and writing three series to a
CSV file: the year, the quarter, and the associated value of STN (short-term interest rate).

We then establish an annual dataset with the same temporal span as the AWM data, and use
join to create four series from the CSV file, Eurorate_q4 to Eurorate_q1, matching rows
via join’s tkey apparatus and filtering on the respective quarters. Partial output is shown
beneath the script.

At this point we’d be ready to append an actual annual series that’s of interest as a depen-
dent variable, and estimate a model in which the quarterly interest-rate series figure as high-
frequency independent variables.

Listing 7: Create a MIDAS dataset via join

open AWM --quiet
series yr = $obsmajor
series qtr = $obsminor
# STN = short-term interest rate
store @dotdir/tmp.csv yr qtr STN

# 116 quarters = 29 annual observations
nulldata 29
# Annual data starting in 1970
setobs 1 1970
list ER = null
loop for (q=4; q>0; q--) --quiet
vname = sprintf("Eurorate_q%d", q)
flt = sprintf("qtr==%d", q)
join "@dotdir/tmp.csv" @vname --data=STN --tkey=",%YQ%q" --filter="@flt"
ER += @vname

endloop
setinfo ER --midas
print ER -o

Eurorate_q4 Eurorate_q3 Eurorate_q2 Eurorate_q1

1970 7.1892 7.5600 7.8705 7.9032
1971 5.9811 6.2442 5.8679 6.2773
1972 6.3387 4.6302 4.6883 4.9361
1973 10.9720 9.9925 8.1424 6.7541
1974 10.6747 11.3925 11.0187 11.1175
...
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Appendix B: daily data

Daily data (commonly financial-market data) are often used in practical applications of the
MIDAS methodology. It’s therefore important that gretl support use of such data, but there
are special issues arising from the fact that the number of days in a month, quarter or year is
not a constant. Here we describe the state of things as of September 19, 2017.

It seems to us that it’s necessary to stipulate a fixed, conventional number of days per lower-
frequency period (that is, in practice, per month or quarter, since for the moment we’re ignor-
ing the week as a basic temporal unit and we’re not yet attempting to support the combination
of annual and daily data). But matters are further complicated by the fact that daily data come
in (at least) three sorts: 5 days per week (as in financial-market data), 6-day (some commercial
data which skip Sunday) and 7-day.

That said, we currently support—via compact=spread, as described in section 1—the follow-
ing conversions:

• Daily to monthly: If the daily data are 5-days per week, we impose 22 days per month.
This is the median, and also the mode, of weekdays per month, although some months
have as few as 20 weekdays and some have 23. If the daily data are 6-day we impose 26
days per month, and in the 7-day case, 30 days per month.

• Daily to quarterly: In this case the stipulated days per quarter are simply 3 times the
days-per-month values specified above.

So, given a daily dataset, you can say

dataset compact 12 spread

to convert MIDAS-wise to monthly (or substitute 4 for 12 for a quarterly target). And this is
supposed to work whether the number of days per week is 5, 6 or 7.

That leaves the question of how we handle cases where the actual number of days in the
calendar month or quarter falls short of, or exceeds, the stipulated number. We’ll talk this
through with reference to the conversion of 5-day daily data to monthly; all other cases are
essentially the same, mutatis mutandis.8

We start at “day 1,” namely the first relevant daily date within the calendar period (so the
first weekday, with 5-day data). From that point on we fill up to 22 slots with relevant daily
observations (including, not skipping, NAs due to holidays or whatever). If at the end we have
daily observations left over, we ignore them. If we’re short we fill the empty slots with the
arithmetic mean of the valid, used observations;9 and we fill in any missing values in the same
way.

This means that lags 1 to 22 of 5-day daily data in a monthly dataset are always observa-
tions from days within the prior month (or in some cases “padding” that substitutes for such
observations); lag 23 takes you back to the most recent day in the month before that.

Clearly, we could get a good deal fancier in our handling of daily data: for example, letting
the user determine the number of days per month or quarter, and/or offering more elaborate
means of filling in missing and non-existent daily values. It’s not clear that this would be
worthwhile, but it’s open to discussion.

A little daily-to-monthly example is shown in Listing 8 and Figure 3. The example exercises the
hfplot command (see section 7).

8Or should be! We’re not ready to guarantee that just yet.
9This is the procedure followed in some example programs in the MIDAS Matlab Toolbox.
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Listing 8: Monthly plus daily data

# open a daily dataset
open djclose.gdt

# spread the data to monthly
dataset compact 12 spread
list DJ = djc*

# import an actual monthly series
open fedstl.bin
data indpro

# high-frequency plot
hfplot DJ ; indpro --with-lines --output=daily.pdf \
{set key top left;}

 500

 1000

 1500

 2000

 2500

 3000

 1980  1982  1984  1986  1988  1990
 48

 50

 52

 54

 56

 58

 60

 62

 64

 66
djclose (left)

indpro (right)

Figure 3: Monthly industrial production and daily Dow Jones close
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Appendix C: parameterization functions

Here we give some more detail of the MIDAS parameterizations supported by gretl.

In general the normalized coefficient or weight i (i = 1, . . . , p) is given by

wi =
f(i, θ)∑p
i=1 f(i, θ)

(1)

such that the coefficients sum to unity.

In the normalized exponential Almon case with k parameters the function f(·) is

f(i, θ) = exp

 k∑
j=1

θjij
 (2)

So in the usual two-parameter case we have

wi =
exp

(
θ1i+ θ2i2

)∑p
i=1 exp (θ1i+ θ2i2)

and equal weighting is obtained when θ1 = θ2 = 0.

In the standard, two-parameter normalized beta case we have

f(i, θ) = (i−/p−)θ1−1 · (1− i−/p−)θ2−1 (3)

where p− = p − 1, and i− = i − 1 except at the end-points, i = 1 and i = p, where we add
and subtract, respectively, machine epsilon to avoid numerical problems. This formulation
constrains the coefficient on the last lag to be zero—provided that the weights are declining
at higher lags, a condition that is ensured if θ2 is greater than θ1 by a sufficient margin. The
special case of θ1 = θ2 = 1 yields equal weights at all lags. A third parameter can be used
to allow a non-zero final weight, even in the case of declining weights. Let wi denote the
normalized weight obtained by using (3) in (1). Then the modified variant with additional
parameter θ3 can be written as

w(3)i = wi + θ3

1+ pθ3

That is, we add θ3 to each weight then renormalize so that the w(3)i values again sum to unity.

In Eric Ghysels’ Matlab code the two beta variants are labeled “normalized beta density with a
zero last lag” and “normalized beta density with a non-zero last lag” respectively. Note that
while the two basic beta parameters must be positive, the third additive parameter may be
positive, negative or zero.

In the case of the plain Almon polynomial, coefficient i is given by

wi =
k∑
j=1

θjij−1

Note that no normalization is applied in this case, so no additional coefficient should be placed
before the MIDAS lags term in the context of a regression.
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Analytical gradients

Here we set out the expressions for the analytical gradients produced by the mgradient func-
tion, and also used internally by the midasreg command. In these expressions f(i, θ) should
be understood as referring back to the specific forms noted above for the exponential Almon
and beta distributions.

For the normalized exponential Almon case, the gradient is

dwi
dθj

= f(i, θ)ij∑
i f(i, θ)

− f(i, θ)[∑
i f(i, θ)

]2 ∑
i

[
f(i, θ)ij

]

= wi

ij − ∑i
[
f(i, θ)ij

]
∑
i f(i, θ)


For the two-parameter normalized beta case it is

dwi
dθ1

= f(i, θ) log(i−/p−)∑
i f(i, θ)

− f(i, θ)[∑
i f(i, θ)

]2 ∑
i

[
f(i, θ) log(i−/p−)

]

= wi
(

log(i−/p−)−
∑
i
[
f(i, θ) log(i−/p−)

]∑
i f(i, θ)

)

dwi
dθ2

= f(i, θ) log(1− i−/p−)∑
i f(i, θ)

− f(i, θ)[∑
i f(i, θ)

]2 ∑
i

[
f(i, θ) log(1− i−/p−)

]

= wi
(

log(1− i−/p−)−
∑
i
[
f(i, θ) log(1− i−/p−)

]∑
i f(i, θ)

)

And for the three-parameter beta, we have

dw(3)i
dθ1

= 1
1+ pθ3

dwi
dθ1

dw(3)i
dθ2

= 1
1+ pθ3

dwi
dθ2

dw(3)i
dθ3

= 1
1+ pθ3

− p(wi + θ3)
(1+ pθ3)2

For the (non-normalized) Almon polynomial the gradient is simply

dwi
dθj

= ij−1
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