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Subject matter

“Mixed Data Sampling” in gretl

See http://gretl.sourceforge.net/midas/, in particular

ñ midas gretl.pdf : newly revised guide

ñ midas-supp.pdf : supplement with forecasting
experiments, etc.

I will talk about some of the points in each of these
documents.

http://gretl.sourceforge.net/midas/


Mixed frequency data

How to combine frequencies in a single data file/dataset?
“Spread” the higher-frequency data.

Here’s a slice of MIDAS data. . .

gdpc96 indpro_m3 indpro_m2 indpro_m1

1947:1 1934.47 14.3650 14.2811 14.1973
1947:2 1932.28 14.3091 14.3091 14.2532
1947:3 1930.31 14.4209 14.3091 14.2253
1947:4 1960.70 14.8121 14.7562 14.5606
1948:1 1989.54 14.7563 14.9240 14.8960
1948:2 2021.85 15.2313 15.0357 14.7842



Creating a MIDAS dataset

Importation from a database is easy (script):

clear
open fedstl.bin
data gdpc96
data indpro --compact=spread
store gdp_indpro.gdt

Other methods:

ñ Create two datasets, compact the high-frequency one,
then use append.

ñ Use matrices.

ñ Use join.
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MIDAS lists

A MIDAS list is a list of m series holding per-period values of
a single high-frequency series, arranged in the order of most
recent first.

E.g.

list INDPRO = indpro_m3 indpro_m2 indpro_m1

Or (if the series are in the right order)

list INDPRO = indpro_m*

May also want to do

setinfo INDPRO --midas



High frequency lags

The regular lags function works on the base frequency of
the dataset.

But we have the dedicated function hflags:

list INDPRO = indpro_m*
setinfo INDPRO --midas
# create high-frequency lags 1 to 6
list IPL = hflags(1, 6, INDPRO)
list IPL print

ñ The length of the list argument determines the
“compaction factor”, m.

ñ Lags are specified in high-frequency terms.

ñ Ordering of the generated series by lag is automatic.

[back to gretl for a look]
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Leads and nowcasting

Where is high-frequency (HF) lag zero?

Unlike the single-frequency case, it’s a matter of convention.

First, let’s just take a look at the time-line, using the quarterly
plus monthly case—and getting used to right-to-left time!

months
. . . 1 3 2 1 3 2 1 3 2 1 3 2 1

. . . III II I IV III

quarters

Now, if we’ve got that. . .
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Competing conventions

For MIDAS Matlab Toolbox and gretl:

3 2 1 3 2 1 3 2 1 3 2 1
. . . −2 −1 0 1 2 3 . . .

II I IV III

But for R (package midasr):

3 2 1 3 2 1 3 2 1 3 2 1
. . . 0 1 2 3 4 5 . . .

II I IV III

(It took me a while to figure this out!)
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High frequency differences

The regular functions diff and ldiff will not do what you
(probably) want. . .

But we have the dedicated functions hfdiff and hfldiff.

list INDPRO = indpro_m*
setinfo INDPRO --midas
list dX = hfldiff(INDPRO, 100)

The last argument is an optional multiplier, applied to all
generated series.

Then, probably,

list dXL = hflags(1, 10, dX)

Or you can nest the two functions:

list dXL = hflags(1, 10, hfldiff(X, 100))
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Parsimonious parameterizations

Simplest parameterization is “unrestricted MIDAS” (U-MIDAS);
can be estimated by OLS. E.g.

yt = α+ βyt−1 +
p∑

i=1

γi xτ−i

(where τ indicates “high-frequency time”).

But more common to use something more parsimonious, for
example:

ñ Normalized exponential Almon

ñ Normalized beta distribution (3 variants)

ñ (non-normalized) Almon polynomial
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Parameterization math: an example

Normalized coefficient or weight i (i = 1, . . . ,p):

wi =
f (i, θ)∑p

i=1 f (i, θ)

such that the coefficients sum to unity.

In the exponential Almon case with k params the function
f (·) is

f (i, θ) = exp

 k∑
j=1

θjij


In the usual two-parameter case we have

wi =
exp

(
θ1i + θ2i2

)
∑p

i=1 exp
(
θ1i + θ2i2

)
with equal weighting when θ1 = θ2 = 0.



Parameterization functions

We offer: mweights, mgradient, mlincomb.

Examples:

matrix w = mweights(p, theta, 1)

Args: number of HF lags, hyperparameters, distribution
code. Returns p-vector.

matrix g = mgradient(p, theta, 1)

Args: as mweights. Returns p × k matrix.

series mx = mlincomb(L, theta, 1)

is equivalent to

series mx = lincomb(L, mweights(nelem(L), theta, 1))
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Uses of parameterization functions

Not required for estimation purposes if our built-in midasreg
command (coming up!) meets your needs.

But useful if you want to roll your own MIDAS estimator.

Also useful if you want to explore the shapes of these
functions. Example, for normalized beta:

matrix theta = {1,1}
matrix shapes = {}
loop for i=1..12
theta[2] = i
shapes ˜= mweights(10, theta, 2)

endloop
shapes ˜= seq(1,10)’
colnames(shapes, "1 2 3 4 5 6 7 8 9 10 11 12 lag")
gnuplot --matrix=shapes --with-lines --output=display \
{ set ylabel ’weight’; }
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Beta shapes

θ1 = 1, θ2 value shown in key; lag order 10.
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Estimation via midasreg

The syntax of midasreg:

midasreg depvar xlist ; midas-terms [ options ]

midas-terms specifications:

1 mds(mlist, minlag, maxlag, type, theta)
2 mds(mlist, minlag, maxlag, 0)

3 mdsl(llist, type, theta)
4 mdsl(llist, 0)

Cases 1, 2: mlist is a MIDAS list (no lags included). Lags are
generated automatically, governed by the minlag and
maxlag arguments.

Cases 3, 4: llist already contains the required set of
high-frequency lags.

Cases 2 and 4 are for U-MIDAS: initial θ is not needed.
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Example of midasreg usage

Using the MIDAS dataset supplied with gretl, replicate one of
Ghysels’ Matlab examples.

open gdp_midas.gdt --quiet

# form the dependent variable
series dy = 100 * ldiff(qgdp)
# form list of high-frequency lagged log differences
list X = payems*
list dXL = hflags(3, 11, hfldiff(X, 100))

# estimation sample
smpl 1985:1 2009:1

print "normalized beta with zero last lag"
midasreg dy 0 dy(-1) ; mdsl(dXL, 2, {1,5})



Example of midasreg output

Model 1: MIDAS (NLS), using observations 1985:1-2009:1 (T = 97)
Using L-BFGS-B with conditional OLS
Dependent variable: dy

estimate std. error t-ratio p-value
-----------------------------------------------------
const 0.665560 0.139647 4.766 7.00e-06 ***
dy_1 0.284700 0.118466 2.403 0.0183 **

MIDAS list dXL, high-frequency lags 3 to 11

HF_slope 1.91207 0.574921 3.326 0.0013 ***
Beta1 0.990377 0.106112 9.333 5.77e-15 ***
Beta2 6.61573 17.1396 0.3860 0.7004

Mean dependent var 1.274925 S.D. dependent var 0.682517
Sum squared resid 29.64215 S.E. of regression 0.567624
R-squared 0.337155 Adjusted R-squared 0.308336
Log-likelihood -80.13963 Akaike criterion 170.2793
Schwarz criterion 183.1528 Hannan-Quinn 175.4847
rho -0.036012 Durbin’s h -0.354681

GNR: R-squared = 5.77316e-15, max |t| = 5.6468e-07
Convergence seems to be reasonably complete

We can reproduce the MIDAS Matlab Toolbox results to at
least 4 significant figures. . . apart from standard errors on
the hyperparameters.
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Back-ends to midasreg

The midasreg command calls one of several possible
estimation methods in the background, depending on the
MIDAS specification(s).

If the only specification type is U-MIDAS, the method is OLS.
Otherwise it is one of three variants of Nonlinear Least
Squares.

ñ Levenberg–Marquardt. This is the back-end for gretl’s
nls command.

ñ L-BFGS-B with conditional OLS. L-BFGS is a “limited
memory” version of the BFGS optimizer and the trailing
“-B” means that it supports bounds on the parameters.

ñ Golden Section search with conditional OLS. This is a line
search method, used only when there is a just a single
hyperparameter to estimate.



Back-ends to midasreg

The midasreg command calls one of several possible
estimation methods in the background, depending on the
MIDAS specification(s).

If the only specification type is U-MIDAS, the method is OLS.
Otherwise it is one of three variants of Nonlinear Least
Squares.

ñ Levenberg–Marquardt. This is the back-end for gretl’s
nls command.

ñ L-BFGS-B with conditional OLS. L-BFGS is a “limited
memory” version of the BFGS optimizer and the trailing
“-B” means that it supports bounds on the parameters.

ñ Golden Section search with conditional OLS. This is a line
search method, used only when there is a just a single
hyperparameter to estimate.



Back-ends to midasreg

The midasreg command calls one of several possible
estimation methods in the background, depending on the
MIDAS specification(s).

If the only specification type is U-MIDAS, the method is OLS.
Otherwise it is one of three variants of Nonlinear Least
Squares.

ñ Levenberg–Marquardt. This is the back-end for gretl’s
nls command.

ñ L-BFGS-B with conditional OLS. L-BFGS is a “limited
memory” version of the BFGS optimizer and the trailing
“-B” means that it supports bounds on the parameters.

ñ Golden Section search with conditional OLS. This is a line
search method, used only when there is a just a single
hyperparameter to estimate.



Back-ends to midasreg

The midasreg command calls one of several possible
estimation methods in the background, depending on the
MIDAS specification(s).

If the only specification type is U-MIDAS, the method is OLS.
Otherwise it is one of three variants of Nonlinear Least
Squares.

ñ Levenberg–Marquardt. This is the back-end for gretl’s
nls command.

ñ L-BFGS-B with conditional OLS. L-BFGS is a “limited
memory” version of the BFGS optimizer and the trailing
“-B” means that it supports bounds on the parameters.

ñ Golden Section search with conditional OLS. This is a line
search method, used only when there is a just a single
hyperparameter to estimate.



Back-ends to midasreg

The midasreg command calls one of several possible
estimation methods in the background, depending on the
MIDAS specification(s).

If the only specification type is U-MIDAS, the method is OLS.
Otherwise it is one of three variants of Nonlinear Least
Squares.

ñ Levenberg–Marquardt. This is the back-end for gretl’s
nls command.

ñ L-BFGS-B with conditional OLS. L-BFGS is a “limited
memory” version of the BFGS optimizer and the trailing
“-B” means that it supports bounds on the parameters.

ñ Golden Section search with conditional OLS. This is a line
search method, used only when there is a just a single
hyperparameter to estimate.



Back-ends, continued

Levenberg–Marquardt is the default NLS method, but if the
MIDAS specs include any beta variant or normalized
exponential Almon we switch to L-BFGS-B, unless the user
gives the --levenberg option.

Setting bounds on the hyperparameters via L-BFGS-B is
handy: (a) the beta parameters must be non-negative; (b) we
run into numerical problems if their values become too
extreme.

“Conditional OLS” in the context of L-BFGS-B and line search:
the search algorithm is responsible for optimizing the MIDAS
hyperparameter(s) only. When the algorithm calls for
calculation of SSR given θ we optimize all remaining
parameters via OLS.
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Transition. . .

About to end the exposition of gretl’s MIDAS functionality.

But take a peek at the midasreg GUI first.

Now we’ll move on to assessing MIDAS as a forecasting
methodology.

Any questions first?
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Questions

ñ Given the timing with which relevant data become
available, what are the options for forecasting at
different horizons, and what are the implications for the
lag structure of the models one may use?

ñ What choices of high-frequency data and MIDAS
parameterization give the best forecasting performance?

ñ How do MIDAS-based forecasts compare with simpler
methods that use data of a single frequency?

We’ll focus on forecasting (the log difference of) US real GDP.
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Data timing

Define the “data lag” for a given series as the lag between the
end of a period and the first publication of data pertaining to
that period.

Approximate data lags for some commonly referenced US
macro time series:

series source frequency approx lag

CPI BLS monthly 2 weeks
PAYEMS BLS monthly 1 week
INDPRO Fed monthly 2 weeks
GDP BEA quarterly 4 weeks
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Data arrival schedule for a given quarter

Take quarter Qt as “the present” (lag 0); “h” against a lag
indicates a high-frequency lag.

Month end week latest data lag

1 1 PAYEMS Qt−1 month 3 1h
2 INDPRO Qt−1 month 3 1h
4 est. 1, GDP Qt−1 1

2 1 PAYEMS Qt, month 1 0h
2 INDPRO Qt, month 1 0h
4 est. 2, GDP Qt−1 1

3 1 PAYEMS Qt, month 2 −1h
2 INDPRO Qt, month 2 −1h
4 est. 3, GDP Qt−1 1



Lag structure

Consider an ADL-MIDAS model (in log differences) for GDP,
using the first lag of GDP and HF lags 1 to p of INDPRO:

yt = α+ βyt−1 + γW(xτ−1, xτ−2, . . . , xτ−p;θ)+ εt

The forecast from this model is then

ŷt = α̂+ β̂yt−1 + γ̂W(xτ−1, xτ−2, . . . , xτ−p; θ̂)

Assume that to generate a forecast we require actual
published values for all the regressors.

Then we won’t be able to generate a forecast of quarter Qt’s
GDP until the end of week 4 of the quarter, when the advance
estimate of the prior quarter’s GDP becomes available.
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ŷt = α̂+ β̂yt−1 + γ̂W(xτ−1, xτ−2, . . . , xτ−p; θ̂)

Assume that to generate a forecast we require actual
published values for all the regressors.

Then we won’t be able to generate a forecast of quarter Qt’s
GDP until the end of week 4 of the quarter, when the advance
estimate of the prior quarter’s GDP becomes available.



Lag structure

Consider an ADL-MIDAS model (in log differences) for GDP,
using the first lag of GDP and HF lags 1 to p of INDPRO:

yt = α+ βyt−1 + γW(xτ−1, xτ−2, . . . , xτ−p;θ)+ εt

The forecast from this model is then
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Updated nowcast

An updated nowcast could be produced at various points
during the quarter.

A fitted value could be recalculated using the revised GDP
figures for Qt−1 available towards the end of months 2 and 3.

A second model whose HF lags start at 0 could produce a
nowcast incorporating the new INDPRO information that
arrives in month 2:

yt = α1 + β1yt−1 + γ1W(xτ , xτ−1, . . . , xτ−p+1;θ1)+ ηt

And a model whose HF lags start at −1 could use INDPRO
from month 3 to produce a further update.
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Chained forecasts?

We’re forecasting GDP using lagged GDP, so in principle the
forecast could be chained: based on observed GDP for Qt−1

we could produce an estimate for Qt then use this in the
equation for Qt+1, before the Qt datum is published.

Expanding the forecast horizon in this way requires that

ñ we somehow obtain forecasts for the high frequency
data too, or

ñ we revise the model to employ less recent lags of the
high frequency data.

Take up the second possibility: in week 4 of Qt we can form
a first nowcast of Qt’s GDP, but at this point the most recent
INDPRO datum is from month 3 of Qt−1, which is HF lag 4
relative to the equation for Qt+1.
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Chaining, continued

The model for forecasting GDP “truly ahead” (as opposed to a
nowcast) would have to be estimated with a minimum HF lag
of 4:

yt = α2 + β2yt−1 + γ2W(xτ−4, xτ−5, . . . , xτ−q;θ2)+ νt

We could then calculate at the end of month 1 of Qt

ŷt+1 = α̂2 + β̂2ỹt + γ̂2W(xτ−1, xτ−2, . . . , xτ−q+3; θ̂2)

with ỹt obtained as a fitted value from the basic forecasting
equation.

Not sure if this is actually of practical interest. ;-)
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MIDAS Matlab Toolbox examples

The MIDAS Matlab Toolbox ADL examples forecast the log
difference of GDP using the first lag of the dependent
variable and HF lags 3 to 11 of the log difference of monthly
payroll employment.

These forecasts are static. So forecasts (nowcasts) cannot be
produced until 4 weeks into the quarter. Then why use xτ−3

as the most recent monthly lag? (A published value for xτ−1

will surely be available.)

No call to be too pedantic. But we have good reason to
consider alternative lag schemes in the experiments that
follow.
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Forecast comparisons

We compare forecasts along 5 dimensions. This invites
combinatorial explosion. We limit ourselves to relatively few
“tics” in most of the dimensions.

High-frequency regressor. We look at two candidate monthly
series, the Fed’s Index of Industrial Production (INDPRO) and
non-farm Payroll Employment (PAYEMS).

Parameterization. We start with four MIDAS
parameterizations and two single-frequency alternatives. The
MIDAS variants are:

Beta 2 Two-parameter normalized beta
Beta 1 As Beta 2 but with θ1 clamped at 1.0
NEAlmon Normalized exponential Almon, 2 parameters
Almon poly Almon polynomial of order 4
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Comparison dimensions, continued

The single-frequency alternatives are:

AR(1) OLS with regressors constant and yt−1

ARMA(1,1) Exact ML, including a constant

MIDAS lags. We fix on 10 lags of the high-frequency variable,
but we compare results between lags 1 to 10 and lags 0 to 9.

Estimation sample size (T ). In general, the more data the
better. But if there are structural breaks or structural drift
then a shorter sample may yield more accurate forecasts. T
varies between 60 and 120 quarters.

Forecast start date. Results are likely to differ depending on
the particular historical stretch of data. We initially use four
different starting points for forecasts: 2000Q1, 2005Q1,
2010Q1 and 2015Q1.
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Data: realtime or hindsight?

Realtime: assume that the econometrician at time t had
access only to data actually published at time s ≤ t.

Hindsight: hypothetically endow the econometrician at time t
with the current best estimate of quantities dated s ≤ t.

Realtime is more complicated: have to assemble several
archival datasets. (Though gretl can manage this: see
midas-supp.pdf for details.)

Hindsight easier, and perhaps it’s helpful to “net out” noise
due to contemporaneous measurement error when
comparing forecasting methods?
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Possibly interesting?

cumulated revisiont = 100× yt,τ=26/yt,τ=1
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Forecast assessment plots: procedure

ñ Choose a particular high-frequency predictor.

ñ Choose a particular MIDAS lag set.

ñ Choose a forecast start date.

Run an iteration across sample size: for each T , estimate
each of the six models mentioned above, generate 8 static
forecasts, and record the RMSE. Each plot shows RMSE
against sample size.
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Forecast assessment plot: example
HF regressor INDPRO; HF lags 1 to 10; forecast start 2000Q1.
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Murkier

Results become less clear when we explore the various
dimensions.

[Audience participation!]



A different cut

We try reformulating the experiment such that it’s easier to
produce numerical figures of merit.

ñ Fix on T = 90 observations for estimation.

ñ Drop the riskier MIDAS variants, Beta 2 and Almon poly.

ñ Advance the forecast target quarter-by-quarter from
2000Q1 to 2016Q4, in each case re-estimating the
models and generating a single forecast.

ñ Calculate Mean Absolute Error and Mean Square Error for
the series of 68 forecasts, per model.
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Results
HF series INDPRO

HF lags Beta 1 NEAlmon AR(1) ARMA(1,1) t(67)
0 to 9 MAE 0.3788 0.3758 0.4399 0.4445 −1.805

MSE 0.2648 0.2648 0.3713 0.3590 −2.023

1 to 10 MAE 0.3935 0.3977 0.4399 0.4445 −1.581
MSE 0.2874 0.2946 0.3713 0.3590 −1.953

3 to 11 MAE 0.4493 0.4594 0.4399 0.4445 0.697
MSE 0.3867 0.3812 0.3713 0.3590 1.345

HF series PAYEMS

HF lags Beta 1 NEAlmon AR(1) ARMA(1,1) t(67)
0 to 9 MAE 0.4404 0.4400 0.4399 0.4445 0.004

MSE 0.3124 0.3117 0.3713 0.3590 −0.131

1 to 10 MAE 0.4291 0.4303 0.4399 0.4445 −0.305
MSE 0.3243 0.3286 0.3713 0.3590 −0.537

3 to 11 MAE 0.4502 0.4560 0.4399 0.4445 0.515
MSE 0.3689 0.3803 0.3713 0.3590 0.439



Another view

Normalized exponential Almon using HF lags 0 to 9 of
INDPRO, versus AR(1).

Forecast errors
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Another view, contd.

Cumulation of difference in absolute errors, NEAlmon −
AR(1).
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Would this convince a skeptic?

It seems that the relative performance of monthly industrial
production in forecasting US GDP in the 21st century should
give some grounds for considering MIDAS as a live
alternative.

But was this example cherry-picked?

Would be interesting to see if these findings are confirmed or
thrown in doubt by examination of European macroeconomic
data.
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Thank you for your attention.
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