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Abstract

This package implements non-parametric least squares estimation
for linear models with time varying parameters with or without in-
strumental variables, proposed by Giraitis et al. (2021)
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1 Introduction

The name of the package is a quasi-acronym: kernel-based time-varying
least squares. The package provides functions to perform non-parametric
least squares estimation for linear models with time varying parameters
and possibly endogenous explanatory variables as proposed by Giraitis
et al. (2021), building on earlier work by the same authors (see Giraitis et al.,
2014, 2018).

Apart from the estimators and their covariance matrix, ketvals pro-
vides the classic instrumental variable (IV) diagnostic tools (the Hausman
and Sargan tests) adapted to the time-varying framework. Users can re-
trieve and visualise the results by using dedicated functions.

1.1 The Model

We consider the model, for t = 1 . . . T,{
yt = x′

tβt + ut

xt = z′tψt + νt
(1)

where yt is the dependent variable, xt is a k × 1 vector of (possibly endoge-
nous) regressors, zt denotes a q × 1 vector of instruments and the param-
eters βt and ψt are allowed to vary over time. Finally, ut and νt denote
shocks.

Among others proposed in Giraitis et al. (2021), the package provides
two different estimators:

1. Time-varying OLS estimator

β̂t =

(
T

∑
j=1

bH,|j−t|xjx
′
j

)−1( T

∑
j=1

bH,|j−t|xjyj

)
(2)

2. Time-varying IV estimator1

β̃t =

(
T

∑
j=1

bH,|j−t|ψ̂
′
jzjx

′
j

)−1( T

∑
j=1

bH,|j−t|ψ̂
′
jzjyj

)
(3)

where bH,|j−t| = K
(
|j−t|

H

)
denotes a kernel weight with bandwidth param-

eter H = Th1 and ψ̂j denotes the coefficients ψt estimated by the time-
varying first-stage OLS, so that

ψ̂t =

(
T

∑
j=1

bL,|j−t|zjz
′
j

)−1( T

∑
j=1

bL,|j−t|zjx
′
j

)
,

1Denoted β̃1,t in the original work.
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allowing for a different kernel bandwidth L = Th2 in the “first stage” re-
gression.

Apart from the estimators and their covariance matrix, ketvals pro-
vides the classic IV diagnostic tools adapted to the time-varying frame-
work:

• the time varying Hausman test;

• the time varying Over-identification test;

• the global Hausman test, which tests the exogeneity hypothesis for a
given time interval between T0 and T1, with 0 ≤ T0 < T1 ≤ T.

We refer to Giraitis et al. (2021) for details.

2 Basic usage

Usage of the package typically proceeds as follows:

1. preprocess the data;

2. estimate the model(s) and store them as bundles;

3. retrieve the necessary results from the estimated bundles via the ded-
icated functions.

As a simple example, we will estimate a time-varying version of a 1970-
style “consumption function”, where we take GDP as endogenous and we
use investment and lagged investment as instruments (note: this example
is used for purely pedagogical purposes; we don’t imply in any way that
the following is a meaningful macroeconometric exercise). The script for
this example is provided in the “examples” directory of the function pack-
age.

Step 1 may be accomplished as follows:

include ketvals.gfn
open fedstl.bin
data gdpc1 pcecc96 gpdic1

series GDP = log(gdpc1)
series Cons = log(pcecc96)
series Inv = log(gpdic1)

list X = const time GDP Cons(-1) # --- regressors
list Z = const time Inv Inv(-1) Cons(-1) # --- instruments

smpl 1984:1 2020:4
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where, after loading the ketvals package, we fetch the data from the St. Louis
FED archive supplied with gretl and set the estimation sample from 1984Q1
to 2020:4.

As for step 2,

mod1 = tv_OLS(Cons, X, 0.6)
mod2 = tv_IV(Cons, X, Z, 0.6)

so we have the OLS estimates in the bundle mod1 and the IV estimates in
the bundle mod2. We use in both cases the standard choice for the kernel
function (Gaussian) and we set the bandwidth parameters to h1 = h2 =
0.6. Since the number of observation T equals 148, the actual bandwidth is
T0.6 = 20.052.

Successful execution of the block above will yield the following output:

ketvals: OLS estimation complete
Sample: 1984:1 - 2020:4 (148 observations)
Kernel type: Gaussian, bandwidth = 20.052 (param = 0.6)
Dependent variable: Cons
Explanatory variables:

const time GDP Cons_1

ketvals: IV estimation complete
Sample: 1984:1 - 2020:4 (148 observations)
Kernel type: Gaussian, bandwidth = 20.052 (param = 0.6)
First stage bandwidth = 20.052 (param = 0.6)
Dependent variable: Cons
Explanatory variables:

const time GDP Cons_1
Instruments:

const time Inv Inv_1 Cons_1

Finally, Step 3 may be something like

series b_ols = coeff_save(mod1, 3)
series b_iv = coeff_save(mod2, 3)
gnuplot b_ols b_iv --with-lines --time-series --output=display

in which we store the coefficient for income for both models: note that GDP
is the third element of the regressors list X, so we have to pass this number
as the second parameter of the coeff_save() function. Finally, we generate
a plot. You should see something similar to Figure 1.

3 Automatic bandwidth selection

The version v0.2 of the package introduces an automatic selection proce-
dure for the bandwidth parameter, based on the modified AIC proposed
by Cai (2007).
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Figure 1: Simple usage example

3.1 Optimal bandwidth: background

The estimators in Equations (2) and (3) can be rewritten as

β̄t =
[
W′

tX
]−1 W′

ty (4)

where Wt and X are matrices with T rows and k columns and y is a T-
element vector. While the matrices X and y simply contain the observations
of the explanatory and dependent variables, respectively, the Wt matrix
contains kernel-weighted entries, where

WOLS
t = DtX,

where Dt is a diagonal T × T matrix whose element [Dt]i,i equals

[Dt]i,i = bH,|t−i|.

and
WIV

t = DtX̂

with X̂ being the first-stage fitted values of explanatory variables X.
In this way, it is possible to rewrite the model in Equation (1) in matrix

form as
Ŷ =HhY

where

Hh =


x′

1
x′

2
. . .

x′
T



G1
G2

...
GT
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with
Gt =

[
W′

tX
]−1 W′

t

depending on h through Wt.
The optimal bandwidth parameter hopt will be the minimiser of AIC(h):

AIC(h) = log(σ̂2) +
2 ∗ (Th + 1)
(T − Th − 2)

where σ̂2 = 1
T ∑T

t=1(yt − ŷt)2 and where Th is the trace of the “smoothing
matrix”Hh.

3.2 Optimal bandwidth: automatic selection

To illustrate how automatic bandwidth selection works, consider step 2 of
the example shown in Section 2. When the estimation method is OLS, auto-
matic bandwidth selection is triggered by setting the bandwidth parameter
h1 to NA, or omit it altogether. In this case, the bandwidth parameter hopt
will be chosen by minimising the AIC criterion among a range of values
between 0.01 and 0.99, and estimation will follow:

mod1 = tv_OLS(Cons, X, NA)

will produce the following output
ketvals: OLS estimation complete
Sample: 1984:1 - 2020:4 (148 observations)
Kernel type: Gaussian, bandwidth = 3.95673 (param = 0.275237)
Auto bandwidth selection (min = 0.01, max = 0.99), AIC = -11.412
Dependent variable: Cons
Explanatory variables:

const time GDP Cons_1

The usage of the automatic bandwidth selection in the tv_IV function
works in a similar manner but the user is asked to provide the bandwidth
parameter for the first step (the input h2), so that

mod2 = tv_IV(Cons, X, Z, NA, 0.6)

will produce the output based on the optimal bandwidth, conditional on
h2 set by the user, which is

ketvals: IV estimation complete
Sample: 1984:1 - 2020:4 (148 observations)
Kernel type: Gaussian, bandwidth = 5.08321 (param = 0.32537)
Auto bandwidth selection (min = 0.01, max = 0.99), AIC = -11.3245
First stage bandwidth = 20.052 (param = 0.6)
Dependent variable: Cons
Explanatory variables:

const time GDP Cons_1
Instruments:

const time Inv Inv_1 Cons_1

The rest of the example follows in the usual way.
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4 Sample script

The sample script provided with the package is a somewhat more elaborate
version of the example provided in the previous subsection. In this case, we
estimate by OLS a dynamic consumption function on European data, but
we also demonstrate the usage of the dedicated plotting function and how
to retrieve the internal elements of the model bundle for later use.

Consider the following model (in ECM form):

∆ct = β1,t + β2,t∆ct−1 + β3,t∆yt + β4,t∆yt−1 + β5,tct−1 + β6,tyt−1 (5)

where ct is the log of private consumption and yt is GDP. All the parameters
are assumed to be time-varying. In this example, we will estimate the time-
varying long run multiplier κt = −β6,t/β5,t, measuring the “steady-state”
income elasticity of consumption and calculate its standard error via the
delta method.

First we load the ketvals package by

include ketvals.gfn

and open the AWM dataset. We the create the needed variables and define
the list of regressors for Equation (5) via standard gretl commands:

open AWM18.gdt --select="YER PCR"
y = log(YER)
c = log(PCR)
diff y c
smpl 1975:1 ;
list X = const d_c(-1) d_y(0 to -1) c(-1) y(-1)

We can now estimate the time-varying OLS coefficients by

mod = tv_OLS(d_c, X, 0.7)

using, again, a Gaussian kernel with bandwidth parameter h1 = 0.7. When
estimation is complete we get the following message:

ketvals: OLS estimation complete
Sample: 1975:1 - 2017:4 (172 observations)
Kernel type: Gaussian, bandwidth = 36.7172 (param = 0.7)
Dependent variable: d_c
Explanatory variables:

const d_c_1 d_y d_y_1 c_1 y_1

We can now plot the series of β5,t and β6,t by

coeff_plot(mod, 5)
coeff_plot(mod, 6)
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Figure 2: Estimated Coefficients
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and the result is reported in Figure 2. The confidence interval is set at its
default value of 95%, but may be adjusted if necessary (see the documenta-
tion for the coeff_plot function).

Moreover, we extract the series of estimated coefficients, together with
their standard errors, as series. Note that the series containing the standard
errors must be given in pointer form, and hence must be declared sepa-
rately.

series se_c1 = NA
series se_y1 = NA
b_c = coeff_save(mod, 5, &se_c1)
b_y = coeff_save(mod, 6, &se_y1)

To compute the long run multiplier, we use the formula κ = − β6
β5

. There-
fore, the time-varying long run multiplier can be immediately computed as

series lrm = - b_y/b_c

As for its standard error, we use the Delta Method: the asymptotic vari-
ance of κt is given by

V(κt) = R′
tV

([
β5,t

β6,t

])
Rt

where Rt is the Jacobian term

Rt ≡

 ∂κt
∂β5,t

∂κt
∂β6,t

 = −
[

κt/β5,t

1/β5,t

]
(6)

The time-varying covariance matrix of the parameters will be present,
in the model bundle, under the vcv key, as a T × (k · (k + 1)/2) matrix,
whose t-th row is the covariance matrix of βt in vech form. The follow-
ing code fragment computes the standard errors for κt by extracting the
suitable part of the covariance matrix at time t as Vt and computing the
Jacobian term Rt; then, the standard error is computed as set =

√
R′

tVtRt.
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Figure 3: Estimated lrm

smpl mod.valid --restrict
series lrm_se = NA

i = 1
loop t = $t1 .. $t2

matrix V = unvech(mod.vcv[i++,]’)[5:6,5:6]
matrix R = - {lrm[t], 1} / b_c[t]
scalar vt = qform(R,V)
lrm_se[t] = sqrt(vt)

endloop
smpl full

Finally, we plot lrm and its 90% Confidence Interval by

plot lrm
options time-series with-lines
options band=lrm,lrm_se,1.64 band-style=fill
literal set title ’Long Run Multiplier’

end plot --output=display

and the output is reported in Figure 3.

5 GUI usage

A graphical interface is provided, under the “Model>Univariate time se-
ries” menu. See Figure 4. The input list should be reasonably obvious,
given the discussion above.
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Figure 4: The GUI interface

6 List of public functions

The package provides 5 public functions. Via scripting, the functions are
the following:

• tv_OLS: this function provides the OLS estimator in Equation (2);

• tv_IV: this function provides the IV estimator in Equation (3), to-
gether with diagnostic tests;

• coeff_plot: easily plots time path for coefficients and standard er-
rors;

• coeff_save: store series of coefficients and (optionally) their stan-
dard errors;

• global_hausman_test: reports the global Hausman test statistic.

6.1 The function tv_OLS

tv_OLS(series yy, list XX, scalar h1[NA], bool verbose[1], type[0:3:1],
matrix optparm[null])
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Return type : bundle

yy : the dependent variable;

XX : the list of regressors;

h1 : the scalar h1 that governs the bandwidth H, automatically selected if
not provided or omitted;

verbose : a Boolean controlling the output verbosity, 1 is the default;

type : a scalar denoting the kernel function, 1 is the default;

optparm : a matrix with the parameters of the exponential kernel, null is
the default.

If the Boolean verbose switch is set to 1 (as by default), a short message
is reported when the estimation process is complete. The scalar type can
assume the following values:

1. Gaussian kernel: K(x) = exp(−x2/2)

2. Rolling window

3. Epanechnikov kernel: K(x) = 0.75(1 − x2) for |x| < 1

4. exponential kernel: K(x) = exp(−cxα)

for the exponential kernel, c and α are set to 1 by default, but can be speci-
fied by the optional matrix argument optparm.
The output of the function is a bundle containing:

• method: the string "OLS".

• t1: 1-based index of the first observation in the currently selected
sample.

• t2: 1-based index of the last observation in the currently selected sam-
ple.

• T: actual sample size, T.

• coeff: a T × k matrix. Each column corresponds to the series of esti-
mated coefficients for each regressor.

• uhat: the T × 1 matrix of residuals.
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• valid: a binary series denoting observations actually included in the
estimation process (=1).

• vcv: a T × (k · (k + 1)/2) matrix. Each row is the vech of the parame-
ters covariance matrix at time t.

• stderr: a T × k matrix. Each column corresponds to the series of
estimated standard error for each regressor.

• names: an array of strings. The names of the covariates.

• depvarname: a string. The name of the dependent variable.

• ktype: a scalar. The kernel type (type).

• bwid: the bandwidth of the kernel function H

• bw_parm: the scalar h1 that governs the bandwidth H (h1).

6.2 The function tv_IV

tv_OLS(series yy, list COVAR, list INST, scalar h1, scalar h2[NA],
bool verbose[1], type[0:3:1], matrix optparm[null])

Return type : bundle

yy : the dependent variable;

COVAR : the list of regressors;

INST : the list of instruments;

h1 : the scalar h1 that governs the bandwidth H; automatically selected if
omitted, conditional on h2;

h2 : the scalar h2 that governs the bandwidth L; optional: it defaults at h1
if omitted.

verbose : a Boolean controlling the output verbosity, 1 is the default;

type : a scalar denoting the kernel function, 1 is the default;

optparm : a matrix with the parameters of the exponential kernel, null is
the default.

Please note that either h1 and h2 must be provided. For details on Boolean
verbose, scalar type and matrix optparm, see tv_OLS.
The output of the function is a bundle containing:
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• method: the string "IV".

• t1: 1-based index of the first observation in the currently selected
sample.

• t2: 1-based index of the last observation in the currently selected sam-
ple.

• T: actual sample size, T.

• coeff: a T × k matrix. Each column corresponds to the series of esti-
mated coefficients for each regressor.

• uhat: the T × 1 matrix of residuals of the “second step” equation.

• valid: a binary series denoting observations actually included in the
estimation process (=1).

• vcv: a T × (k · (k + 1)/2) matrix. Each row is the vech of the parame-
ters covariance matrix at time t.

• stderr: a T × k matrix. Each column corresponds to the series of
estimated standard error for each regressor.

• depvarname: a string. The name of the dependent variable.

• names: an array of strings. The names of the covariates.

• instnames: an array of strings. The name of the instruments.

• ktype: a scalar. The kernel type (type).

• bwid: the bandwidth of the kernel function H

• bw_parm: the scalar h1 that governs the bandwidth H (h1).

• bw_parm2: the scalar h2 that governs the bandwidth L (h2).

• Jstat: a T × 1 matrix, reporting the Over-identification J statistic for
each period.

• Jpval: a T × 1 matrix, reporting the p-value for the J statistic for each
period.

• Hstat: a T × 1 matrix, reporting the Hausman specification test statis-
tic for each period.

• Hpval: a T × 1 matrix, reporting the p-value for the Hausman test
statistic for each period.

• xfitted: a T × k matrix, reporting the fitted values from the “first
stage” regression by columns.

• yhat: a T × 1 matrix, reporting the fitted values of the dependent
variable.
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6.3 The function coeff_plot

coeff_plot(bundle model, scalar v, scalar alpha[0.95],
string dest[null], matrix yr[null])

Return type : void

model : the bundle generated by tv_OLS or tv_IV;

v : a scalar denoting the element in the list of regressors;

alpha : a scalar between 0 and 1; the confidence level, 0.95 is the default;

dest : the string with the name of a graphic file where the plot is saved. If
null (default), the series will be displayed.

yr : if provided, this matrix contains the maximum and the minimum val-
ues for the y-axis.

6.4 The function coeff_save

coeff_save(bundle model, scalar v, series *se[null])

Return type : series

model : the bundle generated by tv_OLS or tv_IV;

v : a scalar denoting the element in the list of regressors;

*se[null] : an existing series (see below). The default is null.

The output of the function is a series containing the values of the estimated
coefficient. If provided, the values of the series *se will be replaced by the
standard errors of the variable defined by v.
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6.5 The function global_hausman_test

global_hausman_test(scalar T0, scalar T1, bundle beols, bundle beiv,
series yy, list COVAR, list INST, scalar type[0:3:1],
scalar h1, matrix optparm[null])

Return type : bundle

T0 : a scalar denoting the starting observation;

T1 : a scalar denoting the ending observation;

beols : the bundle generated by tv_OLS;

beiv : the bundle generated by tv_IV;

yy : the dependent variable;

COVAR : the list of regressors;

INST : the list of instruments;

type : a scalar denoting the kernel function, 1 is the default;

h1 : the scalar h1 that governs the bandwidth H;

optparm :a matrix with the parameters of the exponential kernel, null is
the default.

For details on scalar type, see tv_OLS. The output of the function is a bundle
containing:

• ght_stat: the Global Hausman test statistic, a scalar;

• ght_pval: the p-value for the Global Hausman test statistic, a scalar.

References

Cai, Z. (2007). Trending time-varying coefficient time series models with
serially correlated errors. Journal of Econometrics, 136(1):163–188.

Giraitis, L., Kapetanios, G., and Marcellino, M. (2021). Time-varying instru-
mental variable estimation. Journal of Econometrics, 224(2):394–415.

Giraitis, L., Kapetanios, G., and Yates, T. (2014). Inference on stochastic
time-varying coefficient models. Journal of Econometrics, 179(1):46–65.

15



Giraitis, L., Kapetanios, G., and Yates, T. (2018). Inference on multivariate
heteroscedastic time varying random coefficient models. Journal of Time
Series Analysis, 39(2):129–149.

Changelog

• v1.1: robustify treatment of the dest parameter to coeff_plot (could
fail if filename contained spaces).

• v1.0: add optional parameter to coeff_plot for custom y-range in;
bump version requirement to 2021c

• v0.92: fix bug with bundle initialisation in global_hausman_test

• v0.91: fix bug with IV auto bandwidth selection

• v0.9: add functionality for auto bandwidth selection and graphical
interface; also, reorganize the code internally

• v0.12: pre-release
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